Abstract
Diabetic retinopathy is a common yet complex microvascular disease, caused as a complication of diabetes mellitus. Associated with hyperglycemia and subsequent metabolic abnormalities, advanced stages of the disease lead to fibrosis, subsequent visual impairment and blindness. Though clinical postmortems, animal and cell models provide information about the progression and prognosis of diabetic retinopathy, its underlying pathophysiology still needs a better understanding. In addition to it, the loss of pericytes, immature retinal angiogenesis and neuronal apoptosis portray the disease treatment to be challenging. Indulged with cell loss of both vascular and neuronal type cells, novel therapies like cell replacement strategies by various types of stem cells have been sightseen as a possible treatment of the disease. This review provides insight into the pathophysiology of diabetic retinopathy, current models used in modelling the disease, as well as the varied aspects of stem cells in generating three-dimensional retinal models. Further outlook on stem cell therapy and the future directions of stem cell treatment in diabetic retinopathy have also been contemplated.
This is a preview of subscription content, access via your institution.

Data availability
Not Applicable.
References
Cai X, McGinnis JF (2016) Diabetic retinopathy: animal models, therapies, and perspectives. J Diabetes Res. https://doi.org/10.1155/2016/3789217
Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diab Rep. https://doi.org/10.1007/s11892-017-0913-0
Cho NH, Shaw JE, Karuranga S et al (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023
Yau JWY, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564. https://doi.org/10.2337/dc11-1909
Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186
Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376(9735):124–136
Lai AKW, Lo ACY (2013) Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res. https://doi.org/10.1155/2013/106594
Oshitari T (2022) Diabetic retinopathy: neurovascular disease requiring neuroprotective and regenerative therapies. Neural Regen Res 17:795–796. https://doi.org/10.4103/1673-5374.322457
Gaddam S, Periasamy R, Gangaraju R (2019) Adult stem cell therapeutics in diabetic retinopathy. Int J Mol Sci 20(19):4876
Wakabayashi Y, Usui Y, Okunuki Y et al (2010) Correlation of vascular endothelial growth factor with chemokines in the vitreous in diabetic retinopathy. Retina 30:339–344. https://doi.org/10.1097/IAE.0b013e3181bd2f44
Ansari P, Tabasumma N, Snigdha NN et al (2022) Diabetic retinopathy: an overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology 3:159–175. https://doi.org/10.3390/diabetology3010011
Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20:3218–3225. https://doi.org/10.2174/09298673113209990022
Roy S, Amin S, Roy S (2016) Retinal fibrosis in diabetic retinopathy. Exp Eye Res 142:71–75. https://doi.org/10.1016/j.exer.2015.04.004
Antonetti DA, Barber AJ, Hollinger LA et al (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274:23463–23467. https://doi.org/10.1074/jbc.274.33.23463
Tomita Y, Lee D, Tsubota K et al (2021) Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy. J Clin Med. https://doi.org/10.3390/jcm10204666
Rangasamy S, Srinivasan R, Maestas J et al (2011) A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Investig Ophthalmol Vis Sci 52:3784–3791. https://doi.org/10.1167/iovs.10-6386
Levene R, Horton G, Gorn R (1966) Flat-mount studies of human retinal vessels. Am J Ophthalmol 61:283–289. https://doi.org/10.1016/0002-9394(66)90285-6
Li G, Tang J, Du Y et al (2011) Beneficial effects of a novel RAGE inhibitor on early diabetic retinopathy and tactile allodynia. Mol Vis 17:3156–3165
Howell SJ, Mekhail MN, Azem R et al (2013) Degeneration of retinal ganglion cells in diabetic dogs and mice: Relationship to glycemic control and retinal capillary degeneration. Mol Vis 19:1413–1421
Joussen AM, Doehmen S, Le ML et al (2009) TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis 15:1418–1428
Jiang X, Yang L, Luo Y (2015) Animal models of diabetic retinopathy. Curr Eye Res 40:761–771. https://doi.org/10.3109/02713683.2014.964415
Lyon H, Shome A, Rupenthal ID et al (2021) Tonabersat inhibits connexin43 hemichannel opening and inflammasome activation in an in vitro retinal epithelial cell model of diabetic retinopathy. Int J Mol Sci 22:1–12. https://doi.org/10.3390/ijms22010298
Wang L, Liu WX, Huang XG (2020) MicroRNA-199a-3p inhibits angiogenesis by targeting the VEGF/PI3K/AKT signalling pathway in an in vitro model of diabetic retinopathy. Exp Mol Pathol 116:104488. https://doi.org/10.1016/j.yexmp.2020.104488
Toro MD, Nowomiejska K, Avitabile T et al (2019) Effect of resveratrol on in vitro and in vivo models of diabetic retinophathy: a systematic review. Int J Mol Sci. https://doi.org/10.3390/ijms20143503
Giurdanella G, Lupo G, Gennuso F et al (2020) Activation of the VEGF-A/ERK/PLA2 axis mediates early retinal endothelial cell damage induced by high glucose: new insight from an in vitro model of diabetic retinopathy. Int J Mol Sci 21:1–19. https://doi.org/10.3390/ijms21207528
Yang S, Zhang J, Chen L (2020) The cells involved in the pathological process of diabetic retinopathy. Biomed Pharmacother 132:110818. https://doi.org/10.1016/j.biopha.2020.110818
Kinuthia UM, Wolf A, Langmann T (2020) Microglia and Inflammatory Responses in Diabetic Retinopathy. Front Immunol 11:1–10. https://doi.org/10.3389/fimmu.2020.564077
Tarallo S, Beltramo E, Berrone E, Porta M (2012) Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol. https://doi.org/10.1007/s00592-012-0390-5
Eyre JJ, Williams RL, Levis HJ (2020) A human retinal microvascular endothelial-pericyte co-culture model to study diabetic retinopathy in vitro. Exp Eye Res 201:108293. https://doi.org/10.1016/j.exer.2020.108293
Kumar R, Harris-Hooker S, Kumar R, Sanford G (2011) Co-culture of retinal and endothelial cells results in the modulation of genes critical to retinal neovascularization. Vasc Cell. https://doi.org/10.1186/2045-824X-3-27
Ragelle H, Goncalves A, Kustermann S et al (2020) Organ-on-a-chip technologies for advanced blood-retinal barrier models. J Ocul Pharmacol Ther 36:30–41. https://doi.org/10.1089/jop.2019.0017
Schnichels S, Paquet-Durand F, Löscher M et al (2021) Retina in a dish: cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2020.100880
Tan F, Ding C, Sun X et al (2022) Establishment of a human induced pluripotent stem cell line (CSUASOi008-A) from a type 2 diabetic patient with retinopathy. Stem Cell Res 59:102637. https://doi.org/10.1016/j.scr.2021.102637
Couturier A, Blot G, Vignaud L et al (2021) Reproducing diabetic retinopathy features using newly developed human induced-pluripotent stem cell-derived retinal Müller glial cells. Glia 69:1679–1693. https://doi.org/10.1002/glia.23983
Jin ZB, Gao ML, Deng WL et al (2019) Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 69:38–56. https://doi.org/10.1016/j.preteyeres.2018.11.003
Llonch S, Carido M, Ader M (2018) Organoid technology for retinal repair. Dev Biol 433:132–143. https://doi.org/10.1016/j.ydbio.2017.09.028
Tsakmaki A, Fonseca Pedro P, Bewick GA (2020) Diabetes through a 3D lens: organoid models. Diabetologia 63:1093–1102. https://doi.org/10.1007/s00125-020-05126-3
Deschler EK, Sun JK, Silva PS (2014) Side-effects and complications of laser treatment in diabetic retinal disease. Semin Ophthalmol 29:290–300. https://doi.org/10.3109/08820538.2014.959198
Wang W, Lo ACY (2018) Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. https://doi.org/10.3390/ijms19061816
Van Geest RJ, Lesnik-Oberstein SY, Tan HS et al (2012) A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy. Br J Ophthalmol 96:587–590. https://doi.org/10.1136/bjophthalmol-2011-301005
Kuiper EJ, Van Nieuwenhoven FA, de Smet MD et al (2008) The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS ONE 3:1–7. https://doi.org/10.1371/journal.pone.0002675
Silva M, Peng T, Zhao X et al (2021) Recent trends in drug-delivery systems for the treatment of diabetic retinopathy and associated fibrosis. Adv Drug Deliv Rev 173:439–460. https://doi.org/10.1016/j.addr.2021.04.007
Kuiper EJ, Van Zijderveld R, Roestenberg P et al (2008) Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice. J Histochem Cytochem 56:785–792. https://doi.org/10.1369/jhc.2008.950980
Park TS, Bhutto I, Zimmerlin L et al (2014) Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 129:359–372. https://doi.org/10.1161/CIRCULATIONAHA.113.003000
Tucker BA, Park IH, Qi SD et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0018992
Mendel TA, Clabough EBD, Kao DS et al (2013) Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS ONE 8:e65691. https://doi.org/10.1371/journal.pone.0065691
Caballero S, Sengupta N, Afzal A et al (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56:960–967. https://doi.org/10.2337/db06-1254
Ritter MR, Banin E, Moreno SK et al (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116:3266–3276. https://doi.org/10.1172/JCI29683
Mead B, Berry M, Logan A et al (2015) Stem cell treatment of degenerative eye disease. Stem Cell Res 14(3):243–257
Rajashekhar G, Ramadan A, Abburi C et al (2014) Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS ONE 9:e84671. https://doi.org/10.1371/journal.pone.0084671
Yang Z, Li K, Yan X et al (2010) Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefe’s Arch Clin Exp Ophthalmol 248:1415–1422. https://doi.org/10.1007/s00417-010-1384-z
Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229–230
Ezquer F, Ezquer M, Arango-Rodriguez M, Conget P (2014) Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol 92(2):e86–e95
Griffin TP, Martin WP, Islam N et al (2016) The promise of mesenchymal stem cell therapy for diabetic kidney disease. Curr Diab Rep 16:1–14
Doeppner TR, Herz J, Görgens A et al (2015) Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 4:1131–1143. https://doi.org/10.5966/sctm.2015-0078
Dr O, Tg W, Rk J et al (2016) Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med 5:754–763
Valle-Prieto A, Conget PA (2010) Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev 19:1885–1893. https://doi.org/10.1089/scd.2010.0093
Ezquer F, Giraud-Billoud M, Carpio D et al (2015) Proregenerative microenvironment triggered by donor mesenchymal stem cells preserves renal function and structure in mice with severe diabetes mellitus. Biomed Res Int. https://doi.org/10.1155/2015/164703
Ren M, Yang S, Li J et al (2013) Ginkgo biloba L. extract enhances the effectiveness of syngeneic bone marrow mesenchymal stem cells in lowering blood glucose levels and reversing oxidative stress. Endocrine 43:360–369. https://doi.org/10.1007/s12020-012-9745-5
Sukpat S, Isarasena N, Wongphoom J, Patumraj S (2013) Vasculoprotective effects of combined endothelial progenitor cells and mesenchymal stem cells in diabetic wound care: their potential role in decreasing wound-oxidative stress. Biomed Res Int. https://doi.org/10.1155/2013/459196
Ezquer M, Urzua CA, Montecino S et al (2016) Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 7:1–17. https://doi.org/10.1186/s13287-016-0299-y
Gu C, Zhang H, Gao Y (2021) Adipose mesenchymal stem cells-secreted extracellular vesicles containing microRNA-192 delays diabetic retinopathy by targeting ITGA1. J Cell Physiol 236:5036–5051. https://doi.org/10.1002/jcp.30213
Park SS, Moisseiev E, Bauer G et al (2017) Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2016.10.002
Park SS, Caballero S, Bauer G et al (2012) Long-term effects of intravitreal injection of GMP-grade bone-marrow-derived CD34+ cells in NOD-SCID mice with acute ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 53:986–994. https://doi.org/10.1167/iovs.11-8833
Bhatwadekar AD, Guerin EP, Jarajapu YPR et al (2010) Transient inhibition of transforming growth factor-β1 in human diabetic CD34+ cells enhances vascular reparative functions. Diabetes. https://doi.org/10.2337/db10-0287
Moisseiev E, Smit-McBride Z, Oltjen S et al (2016) Intravitreal administration of human bone marrow CD34+ stem cells in a murine model of retinal degeneration. Investig Ophthalmol Vis Sci 57:4125–4135. https://doi.org/10.1167/iovs.16-19252
Yazdanyar A, Zhang P, Dolf C et al (2020) Effects of intravitreal injection of human CD34+ bone marrow stem cells in a murine model of diabetic retinopathy. Exp Eye Res 190:107865. https://doi.org/10.1016/j.exer.2019.107865
Cerman E, Akkoc T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, Subasi C, Karaoz E (2016) Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in streptozotocin induced diabetic rats. PLoS ONE 11:e0156495
Adak S, Magdalene D, Deshmukh S et al (2021) A review on mesenchymal stem cells for treatment of retinal diseases. Stem Cell Rev Rep 17:1154–1173. https://doi.org/10.1007/s12015-020-10090-x
Tzameret A, Sher I, Belkin M et al (2014) Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res 118:135–144. https://doi.org/10.1016/j.exer.2013.10.023
Zhang W, Wang Y, Kong J et al (2017) Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-00298-2
Mead B, Logan A, Berry M et al (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54:7544–7556. https://doi.org/10.1167/iovs.13-13045
Chen S, Zhang W, Wang JM et al (2016) Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells. Int J Ophthalmol 9:41. https://doi.org/10.18240/ijo.2016.01.07
Li W, Jin LY, Cui YB, Xie N (2021) Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-17–3p ameliorates inflammatory reaction and antioxidant injury of mice with diabetic retinopathy via targeting STAT1. Int Immunopharmacol 90:107010. https://doi.org/10.1016/j.intimp.2020.107010
Millán-Rivero JE, Nadal-Nicolás FM, García-Bernal D et al (2018) Human Wharton’s jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-34527-z
Reid E, Guduric-Fuchs J, O’Neill CL et al (2018) Preclinical evaluation and optimization of a cell therapy using human cord blood-derived endothelial colony-forming cells for ischemic retinopathies. Stem Cells Transl Med 7:59–67. https://doi.org/10.1002/sctm.17-0187
Faris P, Negri S, Perna A et al (2020) Therapeutic potential of endothelial colony-forming cells in ischemic disease: Strategies to improve their regenerative efficacy. Int J Mol Sci 21(19):7406
Dellett M, Brown ED, Guduric-Fuchs J et al (2017) MicroRNA-containing extracellular vesicles released from endothelial colony-forming cells modulate angiogenesis during ischaemic retinopathy. J Cell Mol Med 21:3405–3419. https://doi.org/10.1111/jcmm.13251
Kim KS, Park JM, Kong TH et al (2016) Retinal angiogenesis effects of TGF-β1 and paracrine factors secreted from human placental stem cells in response to a pathological environment. Cell Transplant 25:1145–1157. https://doi.org/10.3727/096368915X688263
Sung Y, Lee SM, Park M et al (2020) Treatment of traumatic optic neuropathy using human placenta-derived mesenchymal stem cells in Asian patients. Regen Med 15:2163–2179. https://doi.org/10.2217/rme-2020-0044
Kim JY, Park S, Park SH et al (2021) Overexpression of pigment epithelium-derived factor in placenta-derived mesenchymal stem cells promotes mitochondrial biogenesis in retinal cells. Lab Invest 101:51–69. https://doi.org/10.1038/s41374-020-0470-z
Cho H, Macklin BL, Lin YY et al (2020) IPSC-derived endothelial cell response to hypoxia via SDF1a/CXCR4 axis facilitates incorporation to revascularize ischemic retina. JCI Insight. https://doi.org/10.1172/jci.insight.131828
Prasain N, Lee MR, Vemula S et al (2014) Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat Biotechnol 32:1151–1157. https://doi.org/10.1038/nbt.3048
Lechner J, Medina RJ, Lois N, Stitt AW (2022) Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 13:1–16. https://doi.org/10.1186/s13287-022-03073-x
Barnea-Cramer AO, Wang W, Lu SJ et al (2016) Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep 6:1–15. https://doi.org/10.1038/srep29784
Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29:825–835. https://doi.org/10.1002/stem.635
Rajashekhar G, Traktuev DO, Roell WC et al (2008) IFATS collection: adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells 26:2674–2681. https://doi.org/10.1634/stemcells.2008-0277
Rajashekhar G (2014) Mesenchymal stem cells: new players in retinopathy therapy. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2014.00059
Elshaer SL, Evans W, Pentecost M et al (2018) Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2Akita mouse. Stem Cell Res Ther 9:1–18. https://doi.org/10.1186/s13287-018-1059-y
Fiori A, Terlizzi V, Kremer H et al (2018) Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology. https://doi.org/10.1016/j.imbio.2018.01.001
Yan Z, Zhuansun Y, Liu G et al (2015) Mesenchymal stem cells suppress T cells by inducing apoptosis and through PD-1/B7-H1 interactions. Immunol Lett 162:248–255. https://doi.org/10.1016/j.imlet.2014.09.013
Yang SH, Park MJ, Yoon IH et al (2009) Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med 41:315–324. https://doi.org/10.3858/emm.2009.41.5.035
Reardon S, Cyranoski D (2014) Japan stem-cell trial stirs envy. Nature 513:287–288
Li XJ, Li CY, Bai D, Leng Y (2021) Insights into stem cell therapy for diabetic retinopathy: a bibliometric and visual analysis. Neural Regen Res 16:172–178. https://doi.org/10.4103/1673-5374.286974
Gu X, Yu X, Zhao C et al (2018) Efficacy and Safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy. Cell Physiol Biochem 49:40–52. https://doi.org/10.1159/000492838
Tassoni A, Gutteridge A, Barber AC et al (2015) Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells 33:3006–3016. https://doi.org/10.1002/stem.2095
Kuriyan AE, Albini TA, Townsend JH et al (2017) Vision loss after intravitreal injection of autologous “Stem Cells” for AMD. N Engl J Med 376:1047–1053. https://doi.org/10.1056/nejmoa1609583
Gu Z, Wen X, Yang N, License RF (2022) Effects of intravitreal injection of hypoxia-induced umbilical cord mesenchymal stem cell exosomes on diabetic retinopathy. Res Sq. https://doi.org/10.21203/rs.3.rs-994654/v2
Cheung KW, Yazdanyar A, Dolf C et al (2021) Analysis of the retinal capillary plexus layers in a murine model with diabetic retinopathy: effect of intravitreal injection of human CD34+ bone marrow stem cells. Ann Transl Med 9:12073–21273. https://doi.org/10.2137/atm-20-3930
Ding SSL, Subbiah SK, Khan MSA et al (2019) Empowering mesenchymal stem cells for ocular degenerative disorders. Int J Mol Sci. https://doi.org/10.3390/ijms20071784
Funding
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
BS: Writing—original draft, review & editing. AR: Writing—review & editing. EB: Idea development and Manuscript revision. OSS: Manuscript revision and figure preparation. All the authors read and approved the final review draft.
Corresponding author
Ethics declarations
Conflict of interest
There are no conflicts of interests among the authors.
Ethical approval
Not Applicable.
Consent to participations
Not Applicable.
Consent for publications
Not Applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Saha, B., Roy, A., Beltramo, E. et al. Stem cells and diabetic retinopathy: From models to treatment. Mol Biol Rep 50, 4517–4526 (2023). https://doi.org/10.1007/s11033-023-08337-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-023-08337-0