Skip to main content

Advertisement

Log in

Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 signaling pathways

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Organ toxicity limits the therapeutic efficacy of methotrexate (MTX), an anti-metabolite therapeutic that is frequently used as an anti-cancer and immunosuppressive medicine. Hepatocellular toxicity is among the most severe side effects of long-term MTX use. The present study unveils new confirmations as regards the remedial effects of morin on MTX-induced hepatocellular injury through regulation of oxidative stress, apoptosis and MAPK signaling.

Methods and results

Rats were subjected to oral treatment of morin (50 and 100 mg/kg body weight) for 10 days. Hepatotoxicity was induced by single intraperitoneal injection of MTX (20 mg/kg body weight) on the 5th day. MTX related hepatic injury was associated with increased MDA while decreased GSH levels, the activities of endogen antioxidants (glutathione peroxidase, superoxide dismutase and catalase) and mRNA levels of HO-1 and Nrf2 in the hepatic tissue. MTX treatment also resulted in apoptosis in the liver tissue via increasing mRNA transcript levels of Bax, caspase-3, Apaf-1 and downregulation of Bcl-2. Conversely, treatment with morin at different doses (50 and 100 mg/kg) considerably mitigated MTX-induced oxidative stress and apoptosis in the liver tissue. Morin also mitigated MTX-induced increases of ALT, ALP and AST levels, downregulated mRNA expressions of matrix metalloproteinases (MMP-2 and MMP-9), MAPK14 and MAPK15, JNK, Akt2 and FOXO1 genes.

Conclusion

According to the findings of this study, morin may be a potential way to shield the liver tissue from the oxidative damage and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data are available with the corresponding author. The data will be provided on request.

References

  1. Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P (2019) Methotrexate an Old Drug with New Tricks.Int J Mol Sci20 (20)

  2. Friedman B, Cronstein B (2019) Methotrexate mechanism in treatment of rheumatoid arthritis. Jt Bone Spine 86(3):301–307

    Article  CAS  Google Scholar 

  3. Cronstein BN, Aune TM (2020) Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 16(3):145–154

    Article  CAS  PubMed  Google Scholar 

  4. Dogra A, Gupta D, Bag S, Ahmed I, Bhatt S, Nehra E, Dhiman S, Kumar A, Singh G, Abdullah ST, Sangwan PL, Nandi U (2021) Glabridin ameliorates methotrexate-induced liver injury via attenuation of oxidative stress, inflammation, and apoptosis. Life Sci 278:119583

    Article  CAS  PubMed  Google Scholar 

  5. Kandemir FM, Kucukler S, Caglayan C, Gur C, Batil AA, Gülçin İ (2017) Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J Food Biochem 41(5):e12398

    Article  Google Scholar 

  6. Aslankoc R, Ozmen O, Yalcın A (2022) Astaxanthin ameliorates damage to the cerebral cortex, hippocampus and cerebellar cortex caused by methotrexate. Biotech Histochem 97(5):382–393

    Article  CAS  PubMed  Google Scholar 

  7. Kuzu M, Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Turk E (2018) Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother 106:443–453

    Article  CAS  PubMed  Google Scholar 

  8. Madhana KVA, Kasala RM, Samudrala ER, Lahkar PK, Gogoi M R (2016) Morin Hydrate mitigates Cisplatin-Induced Renal and hepatic Injury by impeding Oxidative/Nitrosative stress and inflammation in mice. J Biochem Mol Toxicol 30(12):571–579

    Article  PubMed  Google Scholar 

  9. Rajput SA, Wang X-q, Yan H-C (2021) Morin hydrate: a comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother 138:111511

    Article  CAS  PubMed  Google Scholar 

  10. Solairaja S, Andrabi MQ, Dunna NR, Venkatabalasubramanian S (2021) Overview of Morin and its complementary role as an adjuvant for Anticancer Agents. Nutr Cancer 73(6):927–942

    Article  CAS  PubMed  Google Scholar 

  11. Kandemir FM, Yıldırım S, Kucukler S, Caglayan C, Darendelioğlu E, Dortbudak MB (2020) Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: a multi-biomarker approach. Food Chem Toxicol 138:111190

    Article  CAS  PubMed  Google Scholar 

  12. Kuzu M, Yıldırım S, Kandemir FM, Küçükler S, Çağlayan C, Türk E, Dörtbudak MB (2019) Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chem Biol Interact 308:89–100

    Article  CAS  PubMed  Google Scholar 

  13. Hassanein EHM, Shalkami A-GS, Khalaf MM, Mohamed WR, Hemeida RAM (2019) The impact of Keap1/Nrf2, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 signaling pathways in the protective effects of berberine against methotrexate-induced nephrotoxicity. Biomed Pharmacother 109:47–56

    Article  CAS  PubMed  Google Scholar 

  14. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71(4):952–958

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  PubMed  Google Scholar 

  16. Aebi H (1984) [13] catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  17. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25(1):192–205

    Article  CAS  PubMed  Google Scholar 

  18. Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16(2):359–364

    Article  CAS  PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  21. Katturajan R, Rasool SV, Evan Prince M S (2021) Molecular toxicity of methotrexate in rheumatoid arthritis treatment: a novel perspective and therapeutic implications. Toxicology 461:152909

    Article  CAS  PubMed  Google Scholar 

  22. West SG (1997) Methotrexate Hepatotoxicity. Rheum Dis Clin North Am 23(4):883–915

    Article  CAS  PubMed  Google Scholar 

  23. Roghani M, Kalantari H, Khodayar MJ, Khorsandi L, Kalantar M, Goudarzi M, Kalantar H (2020) Alleviation of liver dysfunction, oxidative stress and inflammation underlies the Protective Effect of Ferulic Acid in Methotrexate-Induced Hepatotoxicity. Drug Des Devel Ther 14:1933–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paunovic J, Vucevic D, Radosavljevic T, Pantic S, Veskovic M, Pantic I (2019) Gray-level co-occurrence matrix analysis of chromatin architecture in periportal and perivenous hepatocytes. Histochem Cell Biol 151(1):75–83

    Article  CAS  PubMed  Google Scholar 

  25. Özdemir S, Kucukler S, Çomaklı S, Kandemir FM (2022) The protective effect of Morin against ifosfamide-induced acute liver injury in rats associated with the inhibition of DNA damage and apoptosis. Drug Chem Toxicol 45(3):1308–1317

    Article  PubMed  Google Scholar 

  26. Kalantar M, Kalantari H, Goudarzi M, Khorsandi L, Bakhit S, Kalantar H (2019) Crocin ameliorates methotrexate-induced liver injury via inhibition of oxidative stress and inflammation in rats. Pharmacol Rep 71(4):746–752

    Article  CAS  PubMed  Google Scholar 

  27. Klaunig JE (2018) Oxidative stress and Cancer. Curr Pharm Des 24(40):4771–4778

    Article  CAS  PubMed  Google Scholar 

  28. Eldutar E, Kandemir FM, Kucukler S, Caglayan C (2017) Restorative effects of Chrysin pretreatment on oxidant–antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol-induced hepatotoxicity in rats: an experimental and biochemical study. J Biochem Mol Toxicol 31(11):e21960

    Article  Google Scholar 

  29. Küçükler S, Çomaklı S, Özdemir S, Çağlayan C, Kandemir FM (2021) Hesperidin protects against the chlorpyrifos-induced chronic hepato-renal toxicity in rats associated with oxidative stress, inflammation, apoptosis, autophagy, and up-regulation of PARP-1/VEGF. Environ Toxicol 36(8):1600–1617

    Article  PubMed  Google Scholar 

  30. Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S (2018) Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ Sci Pollut Res 25(21):20968–20984

    Article  CAS  Google Scholar 

  31. Kucukler S, Darendelioglu E, Caglayan C, Ayna A, Yildirim S, Kandemir FM (2020) Zingerone attenuates vancomycin-induced hepatotoxicity in rats through regulation of oxidative stress, inflammation and apoptosis. Life Sci 259:118382

    Article  CAS  PubMed  Google Scholar 

  32. Abo-Haded HM, Elkablawy MA, Al-johani Z, Al-ahmadi O, El-Agamy DS (2017) Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLoS ONE 12(3):e0174295

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yardım A, Kandemir FM, Çomaklı S, Özdemir S, Caglayan C, Kucukler S, Çelik H (2021) Protective Effects of Curcumin against Paclitaxel-Induced spinal cord and sciatic nerve injuries in rats. Neurochem Res 46(2):379–395

    Article  PubMed  Google Scholar 

  34. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang B, Johnson TS, Thomas GL, Watson PF, Wagner B, Furness PN, El Nahas AM (2002) A shift in the Bax/Bcl-2 balance may activate caspase-3 and modulate apoptosis in experimental glomerulonephritis. Kidney Int 62(4):1301–1313

    Article  CAS  PubMed  Google Scholar 

  36. Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS (1999) Bax-dependent Caspase-3 activation is a key determinant in p53-Induced apoptosis in neurons. J Neurosci 19(18):7860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shakeri R, Kheirollahi A, Davoodi J (2017) Apaf-1: regulation and function in cell death. Biochimie 135:111–125

    Article  CAS  PubMed  Google Scholar 

  38. Ebrahimi R, Sepand MR, Seyednejad SA, Omidi A, Akbariani M, Gholami M, Sabzevari O (2019) Ellagic acid reduces methotrexate-induced apoptosis and mitochondrial dysfunction via up-regulating Nrf2 expression and inhibiting the IĸBα/NFĸB in rats. DARU J Pharm Sci 27(2):721–733

    Article  CAS  Google Scholar 

  39. Singh A, Nath O, Singh S, Kumar S, Singh IK (2018) Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant Gene 13:25–35

    Article  CAS  Google Scholar 

  40. Lau ATY, Xu Y-M (2019) Regulation of human mitogen-activated protein kinase 15 (extracellular signal-regulated kinase 7/8) and its functions: a recent update. J Cell Physiol 234(1):75–88

    Article  CAS  Google Scholar 

  41. Madkour MM, Anbar HS, El-Gamal MI (2021) Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 213:113216

    Article  CAS  PubMed  Google Scholar 

  42. Kim Y-J, Song M, Ryu J-C (2009) Mechanisms underlying methotrexate-induced pulmonary toxicity. Expert Opin Drug Saf 8(4):451–458

    Article  CAS  PubMed  Google Scholar 

  43. Spurlock Iii CF, Tossberg JT, Fuchs HA, Olsen NJ, Aune TM (2012) Methotrexate increases expression of cell cycle checkpoint genes via JNK activation. Arthritis Rheum 64(6):1780–1789

    Article  Google Scholar 

  44. Kucukler S, Caglayan C, Darendelioğlu E, Kandemir FM (2020) Morin attenuates acrylamide-induced testicular toxicity in rats by regulating the NF-κB, Bax/Bcl-2 and PI3K/Akt/mTOR signaling pathways. Life Sci 261:118301

    Article  CAS  PubMed  Google Scholar 

  45. Zhou G-L, Tucker DF, Bae SS, Bhatheja K, Birnbaum MJ, Field J (2006) Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J Biol Chem 281(47):36443–36453

    Article  CAS  PubMed  Google Scholar 

  46. Xiao E, Graves DT (2015) Impact of diabetes on the protective role of FOXO1 in Wound Healing. J Dent Res 94(8):1025–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pauta M, Rotllan N, Fernández-Hernando A, Langhi C, Ribera J, Lu M, Boix L, Bruix J, Jimenez W, Suárez Y, Ford DA, Baldán A, Birnbaum MJ, Morales-Ruiz M, Fernández-Hernando C (2016) Akt-mediated foxo1 inhibition is required for liver regeneration. Hepatology 63(5):1660–1674

    Article  CAS  PubMed  Google Scholar 

  48. Paoli P, Cirri P, Caselli A, Ranaldi F, Bruschi G, Santi A, Camici G (2013) The insulin-mimetic effect of Morin: a promising molecule in diabetes treatment. Biochim Biophys Acta - Gen Subj 1830(4):3102–3111

    Article  CAS  Google Scholar 

  49. García-Salazar LF, Ribeiro JAM, Cunha JE, Mattiello SM, Luiz Russo T (2021) Serum activity of matrix metalloproteinase-2 and – 9 is increased in chronic post-stroke individuals: a cross-sectional exploratory study.Top Stroke Rehabil:1–11

  50. Bilginaylar K, Aykac A, Sayiner S, Özkayalar H, Şehirli A (2022) Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats. Mol Biol Rep 49(4):3237–3245

    Article  CAS  PubMed  Google Scholar 

  51. Sivaramakrishnan V, Niranjali Devaraj S (2009) Morin regulates the expression of NF-κB-p65, COX-2 and matrix metalloproteinases in diethylnitrosamine induced rat hepatocellular carcinoma. Chem Biol Interact 180(3):353–359

    Article  CAS  PubMed  Google Scholar 

  52. Shin S-S, Ko M-C, Noh D-H, Hwang B, Park Y, Park SL, Kim W-J, Moon S-K (2018) Morin inhibits PDGF-induced proliferation, migration, and invasion of vascular smooth muscle cells via modulating p27KIP1, AKT, and MMP-9 activities. Gen Physiol Biophys 37(6):633–645

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Part of this study was supported by the Bingol University Scientific Research Project (BAP-FEF.2021.006) and another part was supported by the authors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. HEK, CG and SK performed the experiments. CC and ED designed the present study. FMK, AA and CG analyzed the data. HEK and CC drafted the manuscript. CC, AA and FMK revised the manuscript.

Corresponding authors

Correspondence to Cuneyt Caglayan or Fatih Mehmet Kandemir.

Ethics declarations

Ethical approval

Experimental and animal-care protocols were approved by the Animal Experimentation Ethics Committee of Bingol University (Protocol No: 2022-E.66052).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kızıl, H.E., Caglayan, C., Darendelioğlu, E. et al. Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 signaling pathways. Mol Biol Rep 50, 3479–3488 (2023). https://doi.org/10.1007/s11033-023-08286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08286-8

Keywords

Navigation