Skip to main content
Log in

Early adaptive responses in the skeletal muscle of young mice with hereditary hemochromatosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Hereditary hemochromatosis (HH) is characterized by iron overload that can cause multiple organ dysfunction primarily due to uncontrolled iron-mediated oxidative stress. Although HH leads to muscular weakness, disorder, and fatigue, the mechanism by which HH affects skeletal muscle physiology is largely unknown.

Methods

Using Hfe knockout mice (6–7 months old), a well-defined mouse model of HH, we examined iron status in the skeletal muscle, as well as other organs. As mitochondria are key organelle for muscular function, this study also explored how molecular markers for mitochondrial function and related systems are regulated in the HH skeletal muscle using western blots.

Results

Although iron overload was evident at the systemic level, only mild iron overload was observed in the skeletal muscle of HH. Of note, mitochondrial electron transport chain complex I was upregulated in the HH skeletal muscle, which was accompanied by enhanced autophagy. However, these molecular changes were not associated with oxidative stress, suggesting altered mitochondrial metabolism in the muscle in response to iron overload.

Conclusions

These early adaptive responses may be important for supporting mitochondrial health before fully developing skeletal muscle dysfunction in HH. More studies are needed to determine the role of autophagy in the HH-related muscle mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Netz DJ et al (2011) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8(1):125–132

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson CP et al (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 1823(9):1468–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kassebaum NJ et al (2014) A systematic analysis of global anemia burden from 1990 to 2010. Blood 123(5):615–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sukumaran A et al (2017) Iron overload exacerbates age-associated cardiac hypertrophy in a mouse model of hemochromatosis. Sci Rep 7(1):5756

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mehta KJ, Farnaud SJ, Sharp PA (2019) Iron and liver fibrosis: Mechanistic and clinical aspects. World J Gastroenterol 25(5):521–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gordan R et al (2018) Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev 23(5):801–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82–83:969–974

    Article  PubMed  Google Scholar 

  8. D’Alessio F, Hentze MW, Muckenthaler MU (2012) The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation. J Hepatol 57(5):1052–1060

    Article  CAS  PubMed  Google Scholar 

  9. Witte DL et al (1996) Hereditary hemochromatosis. Clin Chim Acta 245(2):139–200

    Article  CAS  PubMed  Google Scholar 

  10. Barton JC, Edwards CQ, Acton RT (2015) HFE gene: structure, function, mutations, and associated iron abnormalities. Gene 574(2):179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niederau C et al (1996) Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110(4):1107–1119

    Article  CAS  PubMed  Google Scholar 

  12. Allen MK (2010) Hereditary hemochromatosis: a literature review and case report. Physiother Can 62(3):276–284

    Article  PubMed  PubMed Central  Google Scholar 

  13. Davidsen ES et al (2007) Reduced exercise capacity in genetic haemochromatosis. Eur J Cardiovasc Prev Rehabil 14(3):470–475

    Article  PubMed  Google Scholar 

  14. Reardon TF, Allen DG (2009) Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol 94(6):720–730

    Article  CAS  PubMed  Google Scholar 

  15. Alves FM et al (2022) Disruption of Hfe leads to skeletal muscle iron loading and reduction of hemoproteins involved in oxidative metabolism in a mouse model of hereditary hemochromatosis. Biochim Biophys Acta Gen Subj 1866(3):130082

    Article  CAS  PubMed  Google Scholar 

  16. Huang J et al (2010) Iron overload and diabetes risk: a shift from glucose to fatty acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes 60(1):80–87

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim J, Buckett PD, Wessling-Resnick M (2013) Absorption of manganese and iron in a mouse model of hemochromatosis. PLoS ONE 8(5):e64944

    Article  PubMed  PubMed Central  Google Scholar 

  18. Braymer JJ, Lill R (2017) Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem 292(31):12754–12763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas HE et al (2018) Mitochondrial complex I activity is required for maximal autophagy. Cell Rep 24(9):2404–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hou W et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jahng JWS et al (2019) Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Rep 20(10):e47911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujimaki M et al (2019) Iron supply via NCOA4-mediated ferritin degradation maintains mitochondrial functions. Mol Cell Biol 39(14):e00010-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chao, X., et al., Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice. Gastroenterology, 2018. 155(3): p. 865–879 e12.

  24. Agmon E et al (2018) Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 8(1):5155

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang M et al (2015) Combined histological and hematological assessment of iron-induced organ damage in a gerbil model of iron overload. Am J Transl Res 7(2):385–392

    PubMed  PubMed Central  Google Scholar 

  26. Tamosauskaite J et al (2019) Hereditary hemochromatosis associations with frailty, sarcopenia and chronic pain: evidence from 200,975 older UK Biobank participants. J Gerontol A Biol Sci Med Sci 74(3):337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Munoz J, Ferrari N, Kuriakose P (2011) Iron-overload myopathy. Int J Hematol 94(6):503–504

    Article  PubMed  Google Scholar 

  28. Noetzli LJ et al (2008) Longitudinal analysis of heart and liver iron in thalassemia major. Blood 112(7):2973–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levi S, Rovida E (2009) The role of iron in mitochondrial function. Biochim Biophys Acta 1790(7):629–636

    Article  CAS  PubMed  Google Scholar 

  30. Seo AY et al (2008) Mitochondrial iron accumulation with age and functional consequences. Aging Cell 7(5):706–716

    Article  CAS  PubMed  Google Scholar 

  31. Jang S-Y, Kang HT, Hwang ES (2012) Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem 287(23):19304–19314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin W, Kang UJ (2008) Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem 106(1):464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roth JA et al (2010) Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. J Neurochem 113(2):454–464

    Article  CAS  PubMed  Google Scholar 

  34. Ajoolabady A et al (2021) Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab 32(7):444–462

    Article  CAS  PubMed  Google Scholar 

  35. Rouault TA (2016) Mitochondrial iron overload: causes and consequences. Curr Opin Genet Dev 38:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kozhukhar N, Alexeyev MF (2019) Limited predictive value of TFAM in mitochondrial biogenesis. Mitochondrion 49:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Ruiying Cheng and Lingxue Zeng for the initial animal setup.

Funding

This study was in part supported by the U.S. NIH/NINDS R21 NS121394.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonghan Kim or Yuho Kim.

Ethics declarations

Conflict of interest

Author V. Dhorajia declares that he has no conflict of interest. Author J. Kim declares that he has no conflict of interest. Author Y. Kim declares that he has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal experiments were performed in accordance with the Guide for Care and Use of Laboratory Animals of the National Institutes of Health, and the procedure was approved by University of Massachusetts Lowell Institutional Animal Care and Use Committee (IACUC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhorajia, V.V., Kim, J. & Kim, Y. Early adaptive responses in the skeletal muscle of young mice with hereditary hemochromatosis. Mol Biol Rep 50, 3179–3187 (2023). https://doi.org/10.1007/s11033-023-08264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08264-0

Keywords

Navigation