Skip to main content
Log in

Polymorphisms and gene expression of metalloproteinases and their inhibitors associated with cerebral ischemic stroke in young patients with sickle cell anemia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Sickle cell anemia (SCA) is a genetic disease with great clinical heterogeneity and few viable strategies for treatment; hydroxyurea (HU) is the only widely used drug. Thus, the study of single nucleotide polymorphisms (SNPs) and the gene expression of MMPs 1, 2, 9, 7 and TIMPs 1 and 2, which are involved in the regulation of extracellular matrix, inflammation, and neuropathies, may provide further insights into the pathophysiology of the disease and elucidate biomarkers and molecules as potential therapeutic targets for patients with SCA.

Methods and results

We evaluated 251 young individuals with SCA from northeastern Brazil. The groups were divided according to vaso-occlusive crisis (VOC) and cerebrovascular disease (CVD), compared to control individuals. SNP detection and gene expression assays were performed by real-time PCR, TaqMan system®. Both the expression levels of MMP1 gene, and the SNP MMP1-1607 1G/2G were associated with the risk of cerebral ischemic stroke (IS), and the expression of MMP1 was also associated with a higher frequency of VOC/year. Expression levels of MMP7, TIMP1, and TIMP2 were increased in patients conditioned to IS. The SNP 372T>C (rs4898) TIMP1 T alleles were more frequent in patients with > 5 VOC events/year. The SNP rs17576 of MMP9 showed differences in gene expression levels; it was increased in the genotypes AG, and AG+GG.

Conclusion

The findings of this study, the SNPs, and expression provide initial support for understanding the role of MMPs-TIMPs in the pathophysiology of SCA in young patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miranda CTOF, Vermeulen-Serpa KM, Pedro ACC, Brandão-Neto J, Vale SHL, Figueiredo MS (2022) Zinc in sickle cell disease: a narrative review. J Trace Elem Med Biol 72:126980. https://doi.org/10.1016/j.jtemb.2022.126980

    Article  CAS  PubMed  Google Scholar 

  2. Sales RR, Nogueira BL, Tosatti JAG, Gomes KB, Luizon MR (2022) Do genetic polymorphisms affect fetal hemoglobin (HbF) levels in patients with sickle cell anemia treated with hydroxyurea? A systematic review and pathway analysis. Front Pharmacol 12:779497. https://doi.org/10.3389/fphar.2021.779497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vichinksy EP (1997) Understating the morbidity of sickle cell disease. Br J Haematol 99(4):974–976; author reply 976–977. https://doi.org/10.1046/j.1365-2141.1997.5013304.x

  4. Higgs DR, Wood WG (2008) Genetic complexity in sickle cell disease. Proc Natl Acad Sci USA 105(33):11595–11596. https://doi.org/10.1073/pnas.0806633105

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zago MA, Pinto ACS (2007) The pathophysiology of sickle cell disease: from the genetic mutation to multiorgan dysfunction. Rev Bras Hematol Hemoter 29:207–214. https://doi.org/10.1590/S1516-84842007000300003

    Article  Google Scholar 

  6. Alakbarzade V, Maduakor C, Khan U, Khandanpour N, Rhodes E, Pereira AC (2022) Cerebrovascular disease in sickle cell disease. Pract Neurol. https://doi.org/10.1136/pn-2022-003440

    Article  PubMed  Google Scholar 

  7. Estcourt LJ, Kohli R, Hopewell S, Trivella M, Wang WC (2020) Blood transfusion for preventing primary and secondary stroke in people with sickle cell disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003146.pub4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Williams TN, Thein SL (2018) Sickle cell anemia and its phenotypes. Annu Rev Genomics Hum Genet 19:113–147. https://doi.org/10.1146/annurev-genom-083117-021320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kavanagh PL, Fasipe TA, Wun T (2022) Sickle cell disease: a review. JAMA 328(1):57–68. https://doi.org/10.1001/jama.2022.10233

    Article  CAS  PubMed  Google Scholar 

  10. Bode W, Fernandez-Catalan C, Grams F, Gomis-Rüth FX, Nagase H, Tschesche H, Maskos K (1999) Insights into MMP-TIMP interactions. Ann NY Acad Sci 878:73–91. https://doi.org/10.1111/j.1749-6632.1999.tb07675.x

    Article  CAS  PubMed  Google Scholar 

  11. Roy R, Morad G, Jedinak A, Moses MA (2020) Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken) 303(6):1557–1572. https://doi.org/10.1002/ar.24188

    Article  CAS  PubMed  Google Scholar 

  12. Simões G, Pereira T, Caseiro A (2022) Matrix metalloproteinases in vascular pathology. Microvasc Res 143:104398. https://doi.org/10.1016/j.mvr.2022.104398

    Article  CAS  PubMed  Google Scholar 

  13. Batra A, Latour LL, Ruetzler CA, Hallenbeck JM, Spatz M, Warach S, Henning EC (2010) Increased plasma and tissue MMP levels are associated with BCSFB and BBB disruption evident on post-contrast FLAIR after experimental stroke. J Cereb Blood Flow Metab 30(6):1188–1199. https://doi.org/10.1038/jcbfm.2010.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood–brain barrier disruption in acute ischemic stroke. Front Neurol 4:32. https://doi.org/10.3389/fneur.2013.00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang N, Lin M, Wang BG, Zeng WY, He YF, Peng HY, Zeng J, Wu ZY, Zhong Y (2016) Low level of low-density lipoprotein cholesterol is related with increased hemorrhagic transformation after acute ischemic cerebral infarction. Eur Rev Med Pharmacol Sci 20(4):673–678

    CAS  PubMed  Google Scholar 

  16. Belini Junior E, Silva DG, Torres Lde S, Okumura JV, Lobo CL, Bonini-Domingos CR (2015) Severity of Brazilian sickle cell disease patients: severity scores and feasibility of the Bayesian network model use. Blood Cells Mol Dis 54(4):321–327. https://doi.org/10.1016/j.bcmd.2015.01.011

    Article  PubMed  Google Scholar 

  17. Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E, Pegelow C, Abboud M, Gallagher D, Kutlar A, Nichols FT, Bonds DR, Brambilla D (1998) Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 339(1):5–11. https://doi.org/10.1056/nejm199807023390102

    Article  CAS  PubMed  Google Scholar 

  18. Davis LG, Dibner MD, Battey JF (1986) Basic method in molecular biology. Elsevier, London, pp 338–388. https://doi.org/10.1002/jobm.3620290605

    Book  Google Scholar 

  19. Ito MT, da Silva Costa SM, Baptista LC, Carvalho-Siqueira GQ, Albuquerque DM, Rios VM, Ospina-Prieto S, Saez RC, Vieira KP, Cendes F, Ozelo MC, Saad STO, Costa FF, Melo MB (2020) Angiogenesis-related genes in endothelial progenitor cells may be involved in sickle cell stroke. J Am Heart Assoc 9(3):e014143. https://doi.org/10.1161/JAHA.119.014143

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hermann DM, Zechariah A (2009) Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab 29(10):1620–1643. https://doi.org/10.1038/jcbfm.2009.100

    Article  CAS  PubMed  Google Scholar 

  21. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9(2):267–285. https://doi.org/10.1111/j.1582-4934.2005.tb00355.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang G, Li W, Guo Y, Li D, Liu Y, Xu S (2018) MMP gene polymorphisms, MMP-1-1607 1G/2G, -519 A/G, and MMP-12-82 A/G, and ischemic stroke: a meta-analysis. J Stroke Cerebrovasc Dis 27(1):140–152. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.021

    Article  PubMed  Google Scholar 

  23. Huang XY, Han LY, Huang XD, Guan CH, Mao XL, Ye ZS (2017) Association of matrix metalloproteinase-1 and matrix metalloproteinase-3 gene variants with ischemic stroke and its subtype. J Stroke Cerebrovasc Dis 26(2):368–375. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.034

    Article  PubMed  Google Scholar 

  24. Wesley RB 2nd, Meng X, Godin D, Galis ZS (1998) Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. Arterioscler Thromb Vasc Biol 18(3):432–440. https://doi.org/10.1161/01.ATV.18.3.432

    Article  CAS  PubMed  Google Scholar 

  25. Rocnik EF, Chan BMC, Pickering G (1998) Evidence for a role of collagen synthesis in arterial smooth muscle cell migration. J Clin Investig 101:1889–1898. https://doi.org/10.1172/JCI1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE, Clowes AW (1995) Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 92(6):1393–1398. https://doi.org/10.1161/01.cir.92.6.1393

    Article  CAS  PubMed  Google Scholar 

  27. Platt OS (2006) Prevention and management of stroke in sickle cell anemia. Hematol Am Soc Hematol Educ Program. https://doi.org/10.1182/asheducation-2006.1.54

    Article  Google Scholar 

  28. Affara M, Dunmore BJ, Sanders DA, Johnson N, Print CG, Charnock-Jones DS (2011) MMP1 bimodal expression and differential response to inflammatory mediators is linked to promoter polymorphisms. BMC Genomics 12:43. https://doi.org/10.1186/1471-2164-12-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rutter JL, Mitchell TI, Buttice G, Meyers J, Gusella JF, Ozelius LJ, Brinckerhoff CE (1998) A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res 58:5321–5325

    CAS  PubMed  Google Scholar 

  30. Liu H, Lan T, Li H, Xu L, Chen X, Liao H, Chen X, Du J, Cai Y, Wang J, Li X, Huang J, Yuan K, Zeng Y (2021) Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics 11(3):1396–1411. https://doi.org/10.7150/thno.53227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meng N, Li Y, Jiang P, Bu X, Ding J, Wang Y, Zhou X, Yu F, Zhang Y, Zhang J, Xia L (2022) A Comprehensive pan-cancer analysis of the tumorigenic role of matrix metallopeptidase 7 (MMP7) across human cancers. Front Oncol 12:916907. https://doi.org/10.3389/fonc.2022.916907

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y (2006) Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 231(1):20–27. https://doi.org/10.1177/153537020623100103

    Article  CAS  PubMed  Google Scholar 

  33. Lind L, Siegbahn A, Lindahl B, Stenemo M, Sundström J, Ärnlöv J (2015) Discovery of new risk markers for ischemic stroke using a novel targeted proteomics chip. Stroke 46(12):3340–3347. https://doi.org/10.1161/strokeaha.115.010829

    Article  CAS  PubMed  Google Scholar 

  34. Tuomainen AM, Kormi I, Havulinna AS, Tervahartiala T, Salomaa V, Sorsa T, Pussinen PJ (2014) Serum tissue-degrading proteinases and incident cardiovascular disease events. Eur J Prev Cardiol 21(7):806–812. https://doi.org/10.1177/2047487312465524

    Article  PubMed  Google Scholar 

  35. Luizon MR, Belo VA, Fernandes KS, Andrade VL, Tanus-Santos JE, Sandrim VC (2016) Plasma matrix metalloproteinase-9 levels, MMP-9 gene haplotypes, and cardiovascular risk in obese subjects. Mol Biol Rep 43(6):463–471. https://doi.org/10.1007/s11033-016-3993-z

    Article  CAS  PubMed  Google Scholar 

  36. Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L, AtheroGene Investigators (2003) Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107(12):1579–1585. https://doi.org/10.1161/01.cir.0000058700.41738.12

    Article  CAS  PubMed  Google Scholar 

  37. Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A, Watkins H, Henney AM (1999) Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99(14):1788–1794. https://doi.org/10.1161/01.cir.99.14.1788

    Article  CAS  PubMed  Google Scholar 

  38. Zielińska-Turek J, Dorobek M, Turek G, Dąbrowski J, Ziemba A, Andziak P, Barcikowska-Kotowicz M (2022) MMP-9, TIMP-1 and S100B protein as markers of ischemic stroke in patients after carotid artery endarterectomy. Pol Merkur Lekarski 50(297):177–182. Retrieved August 19, 2022 from http://medpress.com.pl/shop

  39. Cai H, Huang LY, Hong R, Song JX, Guo XJ, Zhou W, Hu ZL, Wang W, Wang YL, Shen JG, Qi SH (2022) Momordica charantia exosome-like nanoparticles exert neuroprotective effects against ischemic brain injury via inhibiting matrix metalloproteinase 9 and activating the AKT/GSK3β signaling pathway. Front Pharmacol 13:908830. https://doi.org/10.3389/fphar.2022.908830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kosaraju V, Harwani A, Partovi S, Bhojwani N, Garg V, Ayyappan S, Kosmas C, Robbin M (2017) Imaging of musculoskeletal manifestations in sickle cell disease patients. Br J Radiol 90(1073):20160130. https://doi.org/10.1259/bjr.20160130

    Article  PubMed  PubMed Central  Google Scholar 

  41. Su YY, Li HM, Yan ZX, Li MC, Wei JP, Zheng WX, Liu SQ, Deng YT, Xie HF, Li CG (2019) Renin–angiotensin system activation and imbalance of matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 in cold-induced stroke. Life Sci 231:116563. https://doi.org/10.1016/j.lfs.2019.116563

    Article  CAS  PubMed  Google Scholar 

  42. Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L (2014) Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood–brain barrier. Int J Nanomed 9:575–588. https://doi.org/10.2147/ijn.s54750

    Article  Google Scholar 

  43. Chen F, Radisky ES, Das P, Batra J, Hata T, Hori T, Baine AM, Gardner L, Yue MY, Bu G, del Zoppo G, Patel TC, Nguyen JH (2013) TIMP-1 attenuates blood–brain barrier permeability in mice with acute liver failure. J Cereb Blood Flow Metab 33(7):1041–1049. https://doi.org/10.1038/jcbfm.2013.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sabbatini AR, Barbaro NR, de Faria AP, Modolo R, Ritter AM, Pinho C, Amorim RF, Fontana V, Moreno H (2016) Increased circulating tissue inhibitor of metalloproteinase-2 is associated with resistant hypertension. J Clin Hypertens (Greenwich) 18(10):969–975. https://doi.org/10.1111/jch.12865

    Article  CAS  PubMed  Google Scholar 

  45. Castro MM, Rizzi E, Figueiredo-Lopes L, Fernandes K, Bendhack LM, Pitol DL, Gerlach RF, Tanus-Santos JE (2008) Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 198:320–331. https://doi.org/10.1016/j.atherosclerosis.2007.10.011

    Article  CAS  PubMed  Google Scholar 

  46. Lorenzl S, De Pasquale G, Segal AZ, Beal MF (2003) Dysregulation of the levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the early phase of cerebral ischemia. Stroke 34(6):e37–e38; author reply e37–e38. https://doi.org/10.1161/01.str.0000075563.45920.24

  47. Aoki T, Kataoka H, Moriwaki T, Nozaki K, Hashimoto N (2007) Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke 38(8):2337–2345. https://doi.org/10.1161/strokeaha.107.481838

    Article  CAS  PubMed  Google Scholar 

  48. Krizanac-Bengez L, Hossain M, Fazio V, Mayberg M, Janigro D (2006) Loss of flow induces leukocyte-mediated MMP/TIMP imbalance in dynamic in vitro blood–brain barrier model: role of pro-inflammatory cytokines. Am J Physiol Cell Physiol 291(4):C740–C749. https://doi.org/10.1152/ajpcell.00516.2005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was carried out with the support of the Coordination for the Improvement of Higher Education Personnel-Brazil (CAPES)-Funding Code 001. We are grateful for the IAM/Fiocruz (Aggeu Magalhlhães Institute/Oswaldo Cruz Foundation) for awarding us a scholarship as a form of financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

(KPÓ, DNdN, RdSS, AKdSF) performed experiments, analyzed and interpreted data, and drafted the manuscript. (ICCF, GdSA, ACMdA, KPdÓ) recruited patients, updated the clinical data, and reviewed the manuscript. (KPdÓ, ARLdA, MACB, LRSV, TFdMB) analyzed and interpreted data, performed statistical analyses and drafted the manuscript. (PMMFdM, MdSMC, MACB, AdSA, LRSV, TFdMB) conceived and designed the study and reviewed the manuscript.

Corresponding author

Correspondence to Luydson Richardson Silva Vasconcelos.

Ethics declarations

Conflict of interest

The authors inform that there are no conflicts of interest. The authors are solely responsible for the content and writing of this article. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 312 KB)

Supplementary file2 (DOCX 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Kleyton Palmeira, Ó., da Silva Freire, A.K., de Nóbrega, D.N. et al. Polymorphisms and gene expression of metalloproteinases and their inhibitors associated with cerebral ischemic stroke in young patients with sickle cell anemia. Mol Biol Rep 50, 3341–3353 (2023). https://doi.org/10.1007/s11033-023-08262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08262-2

Keywords

Navigation