Skip to main content
Log in

Neuroprotective effect of a novel brain-derived peptide, HIBDAP, against oxygen-glucose deprivation through inhibition of apoptosis in PC12 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The effect of a novel brain-derived peptide, hypoxic-ischemic brain damage associated peptide (HIBDAP), on apoptosis after oxygen-glucose deprivation (OGD) in PC12 cells was investigated.

Methods

The HIBDAP sequence (HSQFIGYPITLFVEKER) was coupled with the carrier peptide of the transactivator of transcription (TAT) sequence (YGRKKRRQRRR). FITC-labelled TAT-HIBDAP was observed by fluorescence microscopy. After TAT-HIBDAP treatment and OGD treatment, the PC12 cell apoptosis rate was analysed using lactate dehydrogenase (LDH) leakage and Annexin V-fluorescein isothiocyanate (FITC) assays. Mitochondrial membrane potential (ΔΨm) was examined by fluorescence microscopy. Protein expression of apoptotic factors was examined by Western blotting.

Results

FITC-labelled TAT-HIBDAP entered the PC12 cell nucleus. Compared with the OGD group, TAT-HIBDAP at low concentrations (1 µM, 5 µM, 10 µM) significantly reduced the apoptosis rate of PC12 cells (except at 20 µM); 5 µM TAT-HIBDAP had the most obvious effect. There were remarkable increases in ΔΨm at different concentrations (1 µM, 5 µM, 10 µM, 20 µM) of TAT-HIBDAP pretreatment, and 5 µM TAT-HIBDAP also had the most obvious effect. TAT-HIBDAP reversed the increased ratio of Bax/Bcl-2 and activation of Caspase-3 induced by OGD.

Conclusion

TAT-HIBDAP is resistant to OGD-induced PC12 cell apoptosis by regulating the Bax/Bcl-2/Caspase-3 pathway, which may provide a novel therapeutic strategy for neonatal HIBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All supporting data are included within the main article.

References

  1. Finder M, Boylan GB, Twomey D, Ahearne C, Murray DM, Hallberg B (2020) Two-year neurodevelopmental outcomes after mild hypoxic ischemic encephalopathy in the era of therapeutic hypothermia. JAMA Pediatr 174(1):48–55

    Article  PubMed  Google Scholar 

  2. Natarajan G, Pappas A, Shankaran S (2016) Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (HIE). Semin Perinatol 40(8):549–555

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    Article  CAS  PubMed  Google Scholar 

  4. Amatya R, Park T, Hwang S, Yang J, Lee Y, Cheong H et al (2020) Drug delivery strategies for enhancing the therapeutic efficacy of toxin-derived anti-diabetic peptides. Toxins (Basel) 12(5):313

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Zhang Z, Xu X, Li Y, Li Y, Jian Y et al (2015) Bioinspired therapeutic dendrimers as efficient peptide drugs based on supramolecular interactions for Tumor Inhibition. Angew Chem Int Ed Engl 54(14):4289–4294

    Article  CAS  PubMed  Google Scholar 

  6. Cao SJ, Xu S, Wang HM, Ling Y, Dong J, Xia RD et al (2019) Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech 20(5):190

    Article  PubMed  Google Scholar 

  7. Hou X, Yuan Z, Wang X, Cheng R, Zhou X, Qiu J (2020) Peptidome analysis of cerebrospinal fluid in neonates with hypoxic-ischemic brain damage. Mol Brain 13(1):133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu B, Yang J, Chen S, Zhang P, Shen L, Li X et al (2017) Oxymatrine on Hsp90a expression and apoptosis in a model of lung ischemia-reperfusion injury. Exp Ther Med 13(4):1381–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodriguez J, Li T, Xu Y, Sun Y, Zhu C (2021) Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury. Neural Regen Res 16(2):205–213

    Article  CAS  PubMed  Google Scholar 

  10. Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A (2008) A dual role of the NF-κB pathway in neonatal hypoxic-ischemic brain damage. Stroke 39(9):2578–2586

    Article  CAS  PubMed  Google Scholar 

  11. van der Kooij MA, Nijboer CH, Ohl F, Groenendaal F, Heijnen CJ, van Bel F et al (2010) NF-κB inhibition after neonatal cerebral hypoxia–ischemia improves long-term motor and cognitive outcome in rats. Neurobiol Dis 38(2):266–272

    Article  PubMed  Google Scholar 

  12. Zhou M, Xu W, Liao G, Bi X, Baudry M (2009) Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR1α truncation. Exp Neurol 218(1):75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Donnini S, Solito R, Monti M, Balduini W, Carloni S, Cimino M et al (2009) Prevention of ischemic brain injury by treatment with the membrane penetrating apoptosis inhibitor, TAT-BH4. Cell Cycle 8(8):1271–1278

    Article  CAS  PubMed  Google Scholar 

  14. Sidhu RS, Tuor UI, Del Bigio MR (1997) Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neurosci Lett 223(2):129–132

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Xu N, Ding Y, Doycheva DM, Zhang Y, Li Q et al (2019) Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic-ischemic encephalopathy. Cell Death Dis 10(2):97

    Article  PubMed  PubMed Central  Google Scholar 

  16. Banasiak KJ, Xia Y, Haddad GG (2000) Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol 62(2):215–249

    Article  CAS  PubMed  Google Scholar 

  17. Northington FJ, Graham EM, Martin LJ (2005) Apoptosis in perinatal hypoxic–ischemic brain injury: how important is it and should it be inhibited? Brain Res Brain Res Rev 50(2):244–257

    Article  CAS  PubMed  Google Scholar 

  18. Nijboer CH, Bonestroo HJ, Zijlstra J, Kavelaars A, Heijnen CJ (2013) Heijnen, mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol Dis 54:432–444

    Article  CAS  PubMed  Google Scholar 

  19. Lai Y, Chen Y, Watkins SC, Nathaniel PD, Guo F, Kochanek PM et al (2008) Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem 104(6):1700–1711

    Article  CAS  PubMed  Google Scholar 

  20. Iijima T (2006) Mitochondrial membrane potential and ischemic neuronal death. Neurosci Res 55(3):234–243

    Article  CAS  PubMed  Google Scholar 

  21. Iijima T, Mishima T, Akagawa K, Iwao Y (2003) Mitochondrial hyperpolarization after transient oxygen-glucose deprivation and subsequent apoptosis in cultured rat hippocampal neurons. Brain Res 993(1–2):140–145

    Article  CAS  PubMed  Google Scholar 

  22. Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70:73–91

    Article  CAS  PubMed  Google Scholar 

  23. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor DL, Edwards AD, Mehmet H (1999) Oxidative metabolism, apoptosis and Perinatal Brain Injury. Brain Pathol 9(1):93–117

    Article  CAS  PubMed  Google Scholar 

  25. Abdel-Wahab A, Hassanin KMA, Mahmoud AA, Abdel-Badeea WIE, Abdel-Razik AH, Attia EZ et al (2021) Physiological roles of Red Carrot Methanolic extract and vitamin E to Abrogate Cadmium-Induced oxidative challenge and apoptosis in rat testes: involvement of the Bax/Bcl-2 ratio. Antioxid (Basel) 10(11):1653

    Article  CAS  Google Scholar 

  26. Li Z, Xiao G, Wang H, He S, Zhu Y (2021) A preparation of Ginkgo biloba L. leaves extract inhibits the apoptosis of hippocampal neurons in post-stroke mice via regulating the expression of Bax/Bcl-2 and Caspase-3. J Ethnopharmacol 280:114481

    Article  CAS  PubMed  Google Scholar 

  27. Ku B, Liang C, Jung JU, Oh BH (2011) Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 21(4):627–641

    Article  CAS  PubMed  Google Scholar 

  28. Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and Disease. Immunity 50(6):1352–1364

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gill R, Soriano M, Blomgren K, Hagberg H, Wybrecht R, Miss MT et al (2002) Role of Caspase-3 activation in Cerebral Ischemia-Induced Neurodegeneration in Adult and neonatal brain. J Cereb Blood Flow Metab 22(4):420–430

    Article  CAS  PubMed  Google Scholar 

  30. Edwards AB, Anderton RS, Knuckey NW, Meloni BP (2018) Perinatal hypoxic-ischemic encephalopathy and neuroprotective peptide therapies: a case for cationic arginine-rich peptides (CARPs). Brain Sci 8(8):147

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meloni BP, Milani D, Edwards AB, Anderton RS, O’Hare Doig RL, Fitzgerald M et al (2015) Neuroprotective peptides fused to arginine-rich cell penetrating peptides: neuroprotective mechanism likely mediated by peptide endocytic properties. Pharmacol Ther 153:36–54

    Article  CAS  PubMed  Google Scholar 

  32. Meloni BP, Mastaglia FL, Knuckey NW (2020) Cationic arginine-rich peptides (CARPs): a novel class of neuroprotective agents with a multimodal mechanism of action. Front Neurol 11:108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 81671500), 333 project of Jiangsu Province, and Nanjing Sanitation Engineering of Young Talents during the 13th Five-Year Plan Period (QRX17076).

Author information

Authors and Affiliations

Authors

Contributions

JQ conceptualized and designed the study, coordinated and supervised the experiments, provided research materials/reagents, reviewed and revised the manuscript. XH conducted the experiments and data interpretation. CJ and YH did the experiments, collected data, analyzed data and drafted the initial manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xuewen Hou or Jie Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Hu, Y., Hou, X. et al. Neuroprotective effect of a novel brain-derived peptide, HIBDAP, against oxygen-glucose deprivation through inhibition of apoptosis in PC12 cells. Mol Biol Rep 50, 3045–3051 (2023). https://doi.org/10.1007/s11033-023-08248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08248-0

Keywords

Navigation