Skip to main content
Log in

Dissecting the biochemical and molecular-genetic regulation of diverse metabolic pathways governing aroma formation in indigenous aromatic indica rice varieties

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Aromatic rice is characterized by its distinct flavor and fragrance, imparted by more than 200 volatile organic compounds. The desirable trait of aroma relies on the type of the variety, with some varieties exhibiting considerably higher aroma content. This prompted us to undergo an exhaustive study of the aroma-associated biochemical pathways and expression of related genes, encoding the enzymes involved in those pathways in indigenous aromatic rice cultivars.

Methods and results

The higher aroma level in aromatic rice varieties was attributed to higher transcript levels of PDH, P5CS, OAT, ODC, DAO and TPI, but lower P5CDH and BADH2, as revealed by comparative expression profiling of genes in 11 aromatic and four non-aromatic varieties. Some of the high-aroma containing varieties exhibited lower expression of SPDS and SPMS genes, concomitant with higher PAO expression. Protein immunoblot analyses showed lesser BADH2 protein accumulation in the aromatic varieties. The involvement of shikimate pathway in aroma formation was justified by higher levels of shikimic and ferulic acids due to higher expression of SK1, SK2 and ARD genes. The aromatic varieties exhibited higher expression of LOX3 and HPL, with higher corresponding enzyme activity, accompanied with lower accumulation of lipid hydroperoxides and higher level of total terpenoids, signifying the role of oxylipin pathway and terpene-related volatiles in aroma formation. The pattern of transcript level and metabolite accumulation followed the same trend in both vegetative (seedling) and reproductive (seed) tissues. Sequence analyses revealed several mutations in the upstream region and different exons and introns of BADH2 in the examined aromatic varieties. The allele specific marker system acted as fingerprint to distinguish the selected aromatic rice varieties. The cleaved amplified polymorphic sequence marker established the absence of any mutation in the 14th exon of BADH2 in the aromatic varieties.

Conclusion

The present work clearly highlighted the biochemical and molecular-genetic mechanism of differential aroma levels which could be attributed to differential regulation of metabolites and genes, belonging to 2-acetyl-1-pyrroline, shikimate, oxylipin and terpenoid metabolic pathways in the indigenous aromatic rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghosh P, Roychoudhury A (2018) Differential levels of metabolites and enzymes related to aroma formation in aromatic indica rice varieties: comparison with non-aromatic varieties. 3 Biotech 8:25

    Article  PubMed  Google Scholar 

  2. Hinge VR, Patil HB, Nadaf AB (2016) Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice (N Y) 9:38

    Article  PubMed  Google Scholar 

  3. Chen S, Yang Y, Shi W et al (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861. https://doi.org/10.1105/tpc.108.058917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoshihashi T, Huong NTT, Inatomi H (2002) Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J Agric Food Chem 50:2001–2004. https://doi.org/10.1021/jf011268s

    Article  CAS  PubMed  Google Scholar 

  5. Poonlaphdecha J, Gantet P, Maraval I et al (2016) Biosynthesis of 2-acetyl-a-pyrroline in rice calli cultures: demonstration of 1-pyrroline as a limiting substrate. Food Chem 197:967–971. https://doi.org/10.1016/j.foodchem.2015.11.060

    Article  CAS  Google Scholar 

  6. Peled-Zehavi H, Oliva M, Xie Q et al (2015) Metabolic engineering of the phenylpropanoid and its primary, precursor pathway to enhance the flavor of fruits and the aroma of flowers. Bioengineering 2:204–212. https://doi.org/10.3390/bioengineering2040204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecules 3:956–972. https://doi.org/10.1093/mp/ssq048

    Article  CAS  Google Scholar 

  8. Koseki T, Ito Y, Furuse S et al (1996) Conversion of ferulic acid into 4-vinylguaiacol, vanillin and vanillic acid in model solutions of Shochu. J Ferment Bioeng 82:46–50. https://doi.org/10.1016/0922-338X(96)89453-0

    Article  CAS  Google Scholar 

  9. Suzuki Y, Ise K, Li C et al (1999) Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds. J Agric Food Chem 47:1119–1124. https://doi.org/10.1021/jf980967a

    Article  CAS  PubMed  Google Scholar 

  10. Vincenti S, Mariani M, Alberti JC et al (2019) Biocatalytic synthesis of natural green leaf volatiles using the lipoxygenase metabolic pathway. Catalysts 9:873. https://doi.org/10.3390/catal9100873

    Article  CAS  Google Scholar 

  11. Bradbury LMT, Fitzgerald TL, Henry RJ et al (2005) The gene for fragrance in rice. Plant Biotechnol J 3:363–370

    Article  CAS  PubMed  Google Scholar 

  12. Amarawathi Y, Singh R, Singh AK et al (2008) Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol Breed 21:49–65. https://doi.org/10.1007/s11032-007-9108-8

    Article  CAS  Google Scholar 

  13. Shi W, Yang Y, Chen S, Xu M (2008) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed 22:185–192. https://doi.org/10.1007/s11032-008-9165-7

    Article  CAS  Google Scholar 

  14. Bourgis F, Guyot R, Gherbi H et al (2008) Characterization of the major fragrance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. Theor Appl Genet 117:353–368. https://doi.org/10.1007/s00122-008-0780-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun SH, Gao FY, Lu XJ et al (2008) Genetic analysis and gene fine mapping of aroma in rice (Oryza sativa L. Cyperales, Poaceae). Genet Mol Biol 31:532–538. https://doi.org/10.1590/S1415-47572008000300021

    Article  CAS  Google Scholar 

  16. Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR (2009) The origin and evolution of fragrance in rice (Oryza sativa L.). Proc Natl Acad Sci 106:14444–14449. https://doi.org/10.1073/pnas.0904077106

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bradbury LMT, Henry RJ, Jin Q et al (2005) A perfect marker for fragrance genotyping in rice. Mol Breed 16:279–283. https://doi.org/10.1007/s11032-005-0776-y

    Article  CAS  Google Scholar 

  18. Dissanayaka S, Kottearachchi NS, Weerasena J, Peiris M (2014) Development of a CAPS marker for the badh2.7 allele in Sri Lankan fragrant rice (Oryza sativa). Plant Breed 133:560–565. https://doi.org/10.1111/pbr.12201

    Article  CAS  Google Scholar 

  19. Sood BC, Siddiq EA (1978) A rapid technique for scent determination in rice. Indian J Genet Plant Breed 38:268–271

    Google Scholar 

  20. Zelaya IA, Anderson JAH, Owen MDK, Landes RD (2011) Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: models in glyphosate-resistant and -susceptible crops. J Agric Food Chem 59:2202–2212. https://doi.org/10.1021/jf1043426

    Article  CAS  PubMed  Google Scholar 

  21. Jadhav AP, Kareparamban JA, Nikam PH, Kadam VJ (2012) Spectrophotometric estimation of ferulic acid from Ferula asafoetida by Folin—Ciocalteu’s reagent. Der Pharmacia Sinica 3:680–684. https://doi.org/10.5530/ijper.47.3.12

    Article  CAS  Google Scholar 

  22. Indumathi C, Durgadevi G, Nithyavani S, Gayathri PK (2014) Estimation of terpenoid content and its antimicrobial property in Enicostemma litorrale. Int J Chemtech Res 6:4264–4267

    CAS  Google Scholar 

  23. Griffiths G, Leverentz M, Silkowski H et al (2000) Lipid hydroperoxide levels in plant tissues. J Exp Bot 51:1363–1370. https://doi.org/10.1093/jexbot/51.349.1363

    Article  CAS  PubMed  Google Scholar 

  24. Vick BA, Zimmerman DC (1976) Lipoxygenase and hydroperoxide lyase in germinating watermelon seedlings. Plant Physiol 57:780–788. https://doi.org/10.1104/pp.57.5.780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Trick HN (2005) Rapid method for high-quality RNA isolation from seed endosperm containing high levels of starch. Biotechniques 38:872–876. https://doi.org/10.2144/05386BM05

    Article  CAS  PubMed  Google Scholar 

  27. Richard MC, Litvak S, Castroviejo M (1991) DNA polymerase s from wheat embryos: a plant d-like DNA polymerase. Arch Biochem Biophys 287:141–150. https://doi.org/10.1016/0003-9861(91)90399-4

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press

    Google Scholar 

  29. Cota-Sanchez JH, Remarchuk K, Ubayasena K (2006) Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Rep 24:161–167. https://doi.org/10.1007/BF02914055

    Article  CAS  Google Scholar 

  30. Mo Z, Huang J, Xiao D et al (2016) Supplementation of 2-AP, Zn and La improves 2-acetyl-1-pyrroline concentrations in detatched aromatic rice panicles in vitro. PLoS ONE 11:e0149523. https://doi.org/10.1371/journal.pone.0149523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo H, Zhang T, Zheng A et al (2020) Exogenous proline induces regulation in 2-acetyl-1-pyrroline (2-AP) biosynthesis and quality characters in fragrant rice (Oryza sativa L.). Sci Rep 10:13971. https://doi.org/10.1038/s41598-020-70984-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nadaf AB, Wakte KV, Zanan RL (2014) 2-Acetyl-1-pyrroline biosynthesis: from fragrance to a rare metabolic disease. J Plant Sci Res 1:102–108

    Google Scholar 

  33. Kaikavoosi K, Kad TD, Zanan RL, Nadaf AB (2015) 2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through Δ1-pyrroline-5-carboxylate (P5CS) gene transformation. Appl Biochem Biotechnol 177:1466–1479. https://doi.org/10.1007/s12010-015-1827-4

    Article  CAS  PubMed  Google Scholar 

  34. Luo H, Du B, He L et al (2019) Exogenous application of zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2-AP) biosynthesis in different fragrant rice genotypes. Sci Rep 9:19513. https://doi.org/10.1038/s41598-019-56159-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li M, Ashraf U, Tian H et al (2016) Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Plant Physiol Biochem 103:167–175. https://doi.org/10.1016/j.plaphy.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  36. Rizzi YS, Monteoliva MI, Fabro G et al (2015) P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions. Front Plant Sci 6:572. https://doi.org/10.3389/fpls.2015.00572

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang ZL, Tang XR, Wang YL et al (2012) Effects of increasing aroma cultivation on aroma and grain yield of aromatic rice and their mechanism. Sci Agric Sin 45:1054–1065

    CAS  Google Scholar 

  38. Poonlaphdecha J, Maraval I, Roques S et al (2012) Effect of timing and duration of salt treatment during growth of a fragrant rice variety on yield and 2-acetly-1-pyrroline, proline and GABA levels. J Agric Food Chem 60:3824–3830. https://doi.org/10.1021/jf205130y

    Article  CAS  PubMed  Google Scholar 

  39. Quinet M, Ndayiragije A, Lefevre I et al (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733. https://doi.org/10.1093/jxb/erq118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Struve C, Christophersen C (2003) Structural equilibrium and ringchain tautomerism of aqueous solutions of 4 aminobutyraldehyde. Heterocycles 60:1907–1914. https://doi.org/10.3987/COM-03-9802

    Article  CAS  Google Scholar 

  41. Fogel WA, Beiganski T, Maslinski CZ (1979) Effects of inhibitors of aldehyde metabolizing enzymes on putrescine metabolism in guinea pig liver homogenates. Inflamm Res 9:42–44. https://doi.org/10.1007/BF02024104

    Article  CAS  Google Scholar 

  42. Su GX, Bai X (2008) Contribution of putrescine degradation to proline accumulation in soyabean leaves under salinity. Biol Plant 52:796–799. https://doi.org/10.1007/s10535-008-0156-7

    Article  CAS  Google Scholar 

  43. Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410. https://doi.org/10.1007/s00299-008-0556-3

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura T, Yokota S, Muramoto Y et al (1997) Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes. Plant J 11:1115–1120. https://doi.org/10.1007/s10535-008-0156-7

    Article  CAS  PubMed  Google Scholar 

  45. Wakte KV, Tad TD, Zanan RL, Nadaf AB (2011) Mechanism of 2-acetyl-1-pyrroline biosynthesis in Bassia latifolia Roxb. flowers. Physiol Mol Biol Plants 17:231–237. https://doi.org/10.1007/s12298-011-0075-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bradbury LMT, Gillies SA, Brushett DJ et al (2008) Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol 68:439–449. https://doi.org/10.1007/s11103-008-9381-x

    Article  CAS  PubMed  Google Scholar 

  47. Vanavichit A, Yoshihashi T, Wanchana S et al (2005) Cloning of Os2AP the aromatic gene controlling the biosynthetic switch of 2-acetyl-1-pyrroline and gamma aminobutyric acid (GABA) in rice. 5th International rice genetics symposium. IRRI, Philippines

    Google Scholar 

  48. Kasai K, Kanno T, Akita M et al (2005) Identification of three shikimate kinase genes in rice: characterization of their differential expression during panicle development and of the enzymatic activities of the encoded proteins. Planta 222:438–447. https://doi.org/10.1007/s00425-005-1559-8

    Article  CAS  PubMed  Google Scholar 

  49. Fucile G, Falconer S, Christendat D (2008) Evolutionary diversification of plant shikimate kinase gene duplicates. PLoS Genet 4:e1000292. https://doi.org/10.1371/journal.pgen.1000292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maeda H, Shasany AK, Schnepp J et al (2010) RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. Plant Cell 22:832–849. https://doi.org/10.1105/tpc.109.073247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93. https://doi.org/10.1016/j.btre.2014.09.002

    Article  CAS  Google Scholar 

  52. Gallage N, Hansen E, Kannangara R et al (2014) Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat Commun 5:4037. https://doi.org/10.1038/ncomms5037

    Article  CAS  PubMed  Google Scholar 

  53. Shin JA, Jeong SH, Jia CH et al (2019) Comparison of antioxidant capacity of 4-vinylguaiacol with catechin and ferulic acid in oil-in-water emulsion. Food Sci Biotechnol 28:35–41. https://doi.org/10.1007/s10068-018-0458-2

    Article  CAS  PubMed  Google Scholar 

  54. Sharma N, Russell SD, Bhalla PL, Singh MB (2011) Putative cis-regulatory elements in genes highly expressed in rice sperm cells. BMC Res Notes 4:319. https://doi.org/10.1186/1756-0500-4-319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial assistance from Council of Scientific and Industrial Research (CSIR), Government of India, through the research Grant [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged. The authors would also like to acknowledge Chinsurah Rice Research Station, West Bengal, and Bidhan Chandra Krishi Viswa Vidyalaya (BCKV), West Bengal, for providing the seeds of all the aromatic as well as non-aromatic rice varieties used in this investigation. The authors also thank Dr. Saikat Paul for assisting in the initial phase of this work.

Funding

Financial assistance from Council of Scientific and Industrial Research (CSIR), Government of India, through the research Grant [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

PG performed all the experiments and generated data. AB assisted in the amplification and purification of the exons and introns of BADH2 gene. AR designed all the experiments, supervised the overall work, drafted the manuscript and critically analyzed all the experimental results.

Corresponding author

Correspondence to Aryadeep Roychoudhury.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in publishing the manuscript.

Research involving human and animal participants

This article does not contain any studies with human participants or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 108 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, P., Banerjee, A. & Roychoudhury, A. Dissecting the biochemical and molecular-genetic regulation of diverse metabolic pathways governing aroma formation in indigenous aromatic indica rice varieties. Mol Biol Rep 50, 2479–2500 (2023). https://doi.org/10.1007/s11033-022-08227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08227-x

Keywords

Navigation