Skip to main content
Log in

Low temperature plasma protects against inflammatory agents-mediated dysfunction of theca cells via enhancing MANF expression

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Low temperature plasma (LTP) exerts a protective effect in inflammation via enhancing MANF expression. Hyperactivation and dysfunction of theca cells induced by inflammatory agents is accompanied by polycystic ovary syndrome (PCOS), which is a common reproductive and endocrine disorder. However, the effect of LTP on theca cells is still unknown.

Methods and results

Theca cells were stimulated with IL-1β or TNF-α for 12 h, then treated with LTP for 100 s. After 8 h, medium supernatant and theca cells were collected. Production of androgen from theca cells were detected by ELISA. The PCNA and Annexin V levels in theca cells were detected by using immunofluorescent staining. The levels of PCNA, BCL-2 and BAX were evaluated by western blot and qPCR. MTT assay was used to detect the viability of theca cells. The proportions of apoptosis of theca cells were detected by Flow cytometry. The mRNA levels of androgenic genes were detected by qPCR. The MANF levels in medium supernatant and cell lysate were detected by using ELISA, western and qPCR. BIP and CHOP expressions were detected by using western blot and qPCR. We found that LTP irradiation decreased inflammatory agents-induced upregulation of androgen and androgenic genes in theca cells. And LTP irradiation relieves IL-1β or TNF-α-induced pathological proliferation and apoptosis in theca cells. In terms of mechanism, LTP irradiation increased MANF level in theca cells to inhibit BIP and CHOP expression.

Conclusion

These evidences suggest the protective effect of LTP on theca cells in inflammatory microenvironment, and LTP has the potential clinical application of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available from the corresponding author on reasonable request.

Abbreviations

BAX:

BCL2-associated X protein

Bcl-2:

B-cell lymphoma-2

HMGCR:

Hydroxylmethylglutaryl-CoA reductase

ER:

Endoplasmic reticulum

LTP:

Low temperature plasma

MANF:

Mesencephalic astrocyte-derived neurotrophic factor

PCNA:

Proliferating Cell Nuclear Antigen

PCOS:

Polycystic ovary syndrome

ROS:

Reactive oxygen species

References

  1. Liu Y, Sun D, Askari S, Patel J, Macias-Montero M, Mitra S, Zhang R, Lin WF, Mariotti D, Maguire P (2015) Enhanced dispersion of TiO2 nanoparticles in a TiO2/PEDOT:PSS hybrid nanocomposite via plasma—liquid interactions. Sci Rep 5:15765. https://doi.org/10.1038/srep15765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahmoudabadi ZD, Eslami E, Narimisa M (2018) Synthesis of Ag/TiO2 nanocomposite via plasma liquid interactions: improved performance as photoanode in dye-sensitized solar cell. J Colloid Interface Sci 529:538–546. https://doi.org/10.1016/j.jcis.2018.06.048

    Article  CAS  PubMed  Google Scholar 

  3. Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C, Yousfi M (2018) Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS ONE 13:e0195512. https://doi.org/10.1371/journal.pone.0195512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirst AM, Frame FM, Arya M, Maitland NJ, O’Connell D (2016) Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumour Biol 37:7021–7031. https://doi.org/10.1007/s13277-016-4911-7

    Article  CAS  PubMed  Google Scholar 

  5. Brulle L, Vandamme M, Ries D, Martel E, Robert E, Lerondel S, Trichet V, Richard S, Pouvesle JM, Le Pape A (2012) Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS ONE 7:e52653. https://doi.org/10.1371/journal.pone.0052653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee Y, Ricky S, Lim TH, Jang KS, Kim H, Song Y, Kim SY, Chung KS (2019) Wound healing effect of nonthermal atmospheric pressure plasma jet on a rat burn wound model: a preliminary study. J Burn Care Res 40:923–929. https://doi.org/10.1093/jbcr/irz120

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A, Brooks AD (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55:1053–1062. https://doi.org/10.1128/AAC.01002-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle JM, Pape AL (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130:2185–2194. https://doi.org/10.1002/ijc.26252

    Article  CAS  PubMed  Google Scholar 

  9. Ma J, Yu KN, Cheng C, Ni G, Shen J, Han W (2018) Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells. Arch Biochem Biophys 658:54–65. https://doi.org/10.1016/j.abb.2018.09.015

    Article  CAS  PubMed  Google Scholar 

  10. Sun T, Zhang X, Hou C, Yu S, Zhang Y, Yu Z, Kong L, Liu C, Feng L, Wang D, Ni G (2022) Cold plasma irradiation attenuates atopic dermatitis via enhancing HIF-1alpha-Induced MANF transcription expression. Front Immunol 13:941219. https://doi.org/10.3389/fimmu.2022.941219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Apostolou A, Shen Y, Liang Y, Luo J, Fang S (2008) Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp Cell Res 314:2454–2467. https://doi.org/10.1016/j.yexcr.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim Y, Park SJ, Chen YM (2017) Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new player in endoplasmic reticulum diseases: structure, biology, and therapeutic roles. Transl Res 188:1–9. https://doi.org/10.1016/j.trsl.2017.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang W, Shen Y, Chen Y, Chen L, Wang L, Wang H, Xu S, Fang S, Fu Y, Yu Y, Shen Y (2014) Mesencephalic astrocyte-derived neurotrophic factor prevents neuron loss via inhibiting ischemia-induced apoptosis. J Neurol Sci 344:129–138. https://doi.org/10.1016/j.jns.2014.06.042

    Article  CAS  PubMed  Google Scholar 

  14. Wang P, Yang Y, Pang G, Zhang C, Wei C, Tao X, Liu J, Xu J, Zhang W, Shen Y (2021) Hepatocyte-derived MANF is protective for rifampicin-induced cholestatic hepatic injury via inhibiting ATF4-CHOP signal activation. Free Radic Biol Med 162:283–297. https://doi.org/10.1016/j.freeradbiomed.2020.10.028

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Wang P, Zhang C, Huang F, Pang G, Wei C, Lv C, Chhetri G, Jiang T, Liu J, Shen Y, Shen Y (2021) Hepatocyte-derived MANF alleviates hepatic ischaemia-reperfusion injury via regulating endoplasmic reticulum stress-induced apoptosis in mice. Liver Int 41:623–639. https://doi.org/10.1111/liv.14697

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Cao T, Luo C, Cai J, Zhou X, Xiao X, Liu S (2020) Crosstalk between ER stress, NLRP3 inflammasome, and inflammation. Appl Microbiol Biotechnol 104:6129–6140. https://doi.org/10.1007/s00253-020-10614-y

    Article  CAS  PubMed  Google Scholar 

  17. Wang C, Bao Q, Hou C, Sun M, Song X, Cao S, Wang X, Shen Q, Zhao Y, Wang D (2021) Mono-macrophage-derived MANF alleviates bacterial myocarditis by inhibiting NF-kappaB activation and myocardial inflammation. Inflammation 44:1916–1926. https://doi.org/10.1007/s10753-021-01469-0

    Article  CAS  PubMed  Google Scholar 

  18. Hou C, Mei Q, Song X, Bao Q, Li X, Wang D, Shen Y (2021) Mono-macrophage-derived MANF protects against lipopolysaccharide-induced acute kidney injury via inhibiting inflammation and renal M1 macrophages. Inflammation 44:693–703. https://doi.org/10.1007/s10753-020-01368-w

    Article  CAS  PubMed  Google Scholar 

  19. Neves J, Zhu J, Sousa-Victor P, Konjikusic M, Riley R, Chew S, Qi Y, Jasper H, Lamba DA (2016) Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 353:aaf3646. https://doi.org/10.1126/science.aaf3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chhetri G, Liang Y, Shao J, Han D, Yang Y, Hou C, Wang P, Tao X, Shen Y, Jiang T, Feng L, Shen Y (2020) Role of mesencephalic astrocyte-derived neurotrophic factor in alcohol-induced liver injury. Oxid Med Cell Longev. https://doi.org/10.1155/2020/9034864

  21. Shen QY, Wang D, Xu HY, Wei CS, Xiao XY, Liu J, Shen YJ, Fang L, Feng LJ, Shen YX (2022) Mesencephalic astrocyte-derived neurotrophic factor attenuates acute lung injury via inhibiting macrophages’ activation. Biomed Pharmacother 150:112943. https://doi.org/10.1016/j.biopha.2022.112943

    Article  CAS  PubMed  Google Scholar 

  22. Carroll J, Saxena R, Welt CK (2012) Environmental and genetic factors influence age at menarche in women with polycystic ovary syndrome. J Pediatr Endocrinol Metab 25:459–466. https://doi.org/10.1515/jpem-2012-0047

    Article  PubMed  PubMed Central  Google Scholar 

  23. Diamanti-Kandarakis E, Piperi C, Spina J, Argyrakopoulou G, Papanastasiou L, Bergiele A, Panidis D (2006) Polycystic ovary syndrome: the influence of environmental and genetic factors. Horm (Athens) 5:17–34. https://doi.org/10.14310/horm.2002.11165

    Article  Google Scholar 

  24. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ (2010) The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 25:544–551. https://doi.org/10.1093/humrep/dep399

    Article  PubMed  Google Scholar 

  25. Walters KA, Gilchrist RB, Ledger WL, Teede HJ, Handelsman DJ, Campbell RE (2018) New perspectives on the pathogenesis of PCOS: neuroendocrine origins. Trends Endocrinol Metab 29:841–852. https://doi.org/10.1016/j.tem.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  26. Tata B, Mimouni NEH, Barbotin AL, Malone SA, Loyens A, Pigny P, Dewailly D, Catteau-Jonard S, Sundstrom-Poromaa I, Piltonen TT, Dal Bello F, Medana C, Prevot V, Clasadonte J, Giacobini P (2018) Elevated prenatal anti-mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med 24:834–846. https://doi.org/10.1038/s41591-018-0035-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jakimiuk AJ, Weitsman SR, Navab A, Magoffin DA (2001) Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overexpressed in thecal and granulosa cells from polycystic ovaries. J Clin Endocrinol Metab 86:1318–1323. https://doi.org/10.1210/jcem.86.3.7318

    Article  CAS  PubMed  Google Scholar 

  28. Wachs DS, Coffler MS, Malcom PJ, Shimasaki S, Chang RJ (2008) Increased androgen response to follicle-stimulating hormone administration in women with polycystic ovary syndrome. J Clin Endocrinol Metab 93:1827–1833. https://doi.org/10.1210/jc.2007-2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wickenheisser JK, Quinn PG, Nelson VL, Legro RS, Strauss JF, McAllister JM (2000) Differential activity of the cytochrome P450 17alpha-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 85:2304–2311. https://doi.org/10.1210/jcem.85.6.6631

    Article  CAS  PubMed  Google Scholar 

  30. Wickenheisser JK, Nelson-Degrave VL, McAllister JM (2005) Dysregulation of cytochrome P450 17alpha-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J Clin Endocrinol Metab 90:1720–1727. https://doi.org/10.1210/jc.2004-1860

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez F, Thusu K, Abdel-Rahman E, Prabhala A, Tomani M, Dandona P (1999) Elevated serum levels of tumor necrosis factor alpha in normal-weight women with polycystic ovary syndrome. Metabolism 48:437–441. https://doi.org/10.1016/s0026-0495(99)90100-2

    Article  CAS  PubMed  Google Scholar 

  32. Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F (2011) Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril 95:1048–1058.e1–2. https://doi.org/10.1016/j.fertnstert.2010.11.036

  33. Ravingerova T, Adameova A, Kelly T, Antonopoulou E, Pancza D, Ondrejcakova M, Khandelwal VK, Carnicka S, Lazou A (2009) Changes in PPAR gene expression and myocardial tolerance to ischaemia: relevance to pleiotropic effects of statins. Can J Physiol Pharmacol 87:1028–1036. https://doi.org/10.1139/Y09-071

    Article  CAS  PubMed  Google Scholar 

  34. Ortega I, Villanueva JA, Wong DH, Cress AB, Sokalska A, Stanley SD, Duleba AJ (2014) Resveratrol potentiates effects of simvastatin on inhibition of rat ovarian theca-interstitial cells steroidogenesis, J Ovarian Res 7:21. https://doi.org/10.1186/1757-2215-7-21

  35. Wong DH, Villanueva JA, Cress AB, Sokalska A, Ortega I, Duleba AJ (2011) Resveratrol inhibits the mevalonate pathway and potentiates the antiproliferative effects of simvastatin in rat theca-interstitial cells. Fertil Steril 96:1252–1258. https://doi.org/10.1016/j.fertnstert.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  36. Fox CW, Zhang L, Sohni A, Doblado M, Wilkinson MF, Chang RJ, Duleba AJ (2019) Inflammatory stimuli trigger increased androgen production and shifts in gene expression in theca-interstitial cells. Endocrinology 160:2946–2958. https://doi.org/10.1210/en.2019-00588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banaszewska B, Pawelczyk L, Spaczynski RZ, Duleba AJ (2011) Effects of simvastatin and metformin on polycystic ovary syndrome after six months of treatment. J Clin Endocrinol Metab 96:3493–3501. https://doi.org/10.1210/jc.2011-0501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sathyapalan T, Kilpatrick ES, Coady AM, Atkin SL (2009) The effect of atorvastatin in patients with polycystic ovary syndrome: a randomized double-blind placebo-controlled study. J Clin Endocrinol Metab 94:103–108. https://doi.org/10.1210/jc.2008-1750

    Article  CAS  PubMed  Google Scholar 

  39. Banaszewska B, Wrotynska-Barczynska J, Spaczynski RZ, Pawelczyk L, Duleba AJ (2016) Effects of resveratrol on polycystic ovary syndrome: a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab 101:4322–4328. https://doi.org/10.1210/jc.2016-1858

    Article  CAS  PubMed  Google Scholar 

  40. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435. https://doi.org/10.1038/nature07201

    Article  CAS  PubMed  Google Scholar 

  41. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  42. Bhat TA, Chaudhary AK, Kumar S, O’Malley J, Inigo JR, Kumar R, Yadav N, Chandra D (2017) Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer. Biochim Biophys Acta Rev Cancer 1867:58–66. https://doi.org/10.1016/j.bbcan.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  43. Braakman I, Hebert DN (2013) Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5:a013201. https://doi.org/10.1101/cshperspect.a013201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O’Connor N, Cahill O, Daniels S, Galvin S, Humphreys H (2014) Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? J Hosp Infect 88:59–65. https://doi.org/10.1016/j.jhin.2014.06.015

    Article  PubMed  Google Scholar 

  45. Sun T, Yu S, Song X, Zhang J, Bao Q, Mei Q, Shen Q, Wang D, Ni G (2022) Cold plasma irradiation regulates inflammation and oxidative stress in human bronchial epithelial cells and human non-small cell lung carcinoma. Radiat Res 197:166–174. https://doi.org/10.1667/RADE-20-00178.1

    Article  CAS  PubMed  Google Scholar 

  46. Nelson VL, Legro RS, Strauss JF, McAllister JM (1999) Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol 13:946–957. https://doi.org/10.1210/mend.13.6.0311

    Article  CAS  PubMed  Google Scholar 

  47. Toulis KA, Goulis DG, Mintziori G, Kintiraki E, Eukarpidis E, Mouratoglou SA, Pavlaki A, Stergianos S, Poulasouchidou M, Tzellos TG, Makedos A, Chourdakis M, Tarlatzis BC (2011) Meta-analysis of cardiovascular disease risk markers in women with polycystic ovary syndrome. Hum Reprod Update 17:741–760. https://doi.org/10.1093/humupd/dmr025

    Article  CAS  PubMed  Google Scholar 

  48. Peng Z, Sun Y, Lv X, Zhang H, Liu C, Dai S (2016) Interleukin-6 levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. PLoS ONE 11:e0148531. https://doi.org/10.1371/journal.pone.0148531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen L, Feng L, Wang X, Du J, Chen Y, Yang W, Zhou C, Cheng L, Shen Y, Fang S, Li J, Shen Y (2015) Mesencephalic astrocyte-derived neurotrophic factor is involved in inflammation by negatively regulating the NF-kappaB pathway. Sci Rep 5:8133. https://doi.org/10.1038/srep08133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kurake N, Tanaka H, Ishikawa K, Kondo T, Sekine M, Nakamura K, Kajiyama H, Kikkawa F, Mizuno M, Hori M (2016) Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch Biochem Biophys 605:102–108. https://doi.org/10.1016/j.abb.2016.01.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by the Joint Construction Project of Obstetrics and Gynecology and Maternal, Child and Adolescent Health [Grant Number 2021lcxk016].

Author information

Authors and Affiliations

Authors

Contributions

ZLW and DW designed the study and supervised the experiments. SJY and XRZ performed the experiments, analyzed the data and wrote the manuscript. TS performed the experiments.

Corresponding authors

Correspondence to Dong Wang or ZhaoLian Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The Ethical Committee of Anhui Medical University approved this research.

Consent for publication

All authors have given consents for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Zhang, X., Sun, T. et al. Low temperature plasma protects against inflammatory agents-mediated dysfunction of theca cells via enhancing MANF expression. Mol Biol Rep 50, 3085–3097 (2023). https://doi.org/10.1007/s11033-022-08185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08185-4

Keywords

Navigation