Skip to main content
Log in

Silencing TAB182 inhibits cell EMT, migration and invasion by downregulating EGFR in A549 NSCLC cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

TAB182 is overexpressed in cancerous tissues and correlated with poor overall survival in lung cancer patients. Mechanistically, TAB182 participates in DNA damage repair and endows tumour cells with radio- and chemoresistance. However, its role in non-small cell lung cancer (NSCLC) remains unclear.

Methods and results

Cells with stable TAB182 knockdown (KD) were generated using A549 NSCLC cells, and we demonstrated that depleting TAB182 inhibits cell EMT, proliferation, colony formation, migration and invasion. Analysis of the TCGA database showed a positive correlation between TAB182 and EGFR, a well-established NSCLC oncoprotein. Then, we verified that silencing TAB182 decreases EGFR expression at both the mRNA and protein levels. Moreover, both TAB182 and EGFR were reported to restore ionizing radiation (IR)-triggered DNA damage. We validated that IR elevates the protein level of EGFR and that silencing TAB182 can alleviate IR-induced EGFR upregulation. Furthermore, overexpressing EGFR abrogates the inhibitory effects of TAB182 KD on EMT, migration, and invasion in A549 cells.

Conclusions

Our data demonstrated that EGFR expression is regulated by TAB182 and downregulation of TAB182 has a novel function to repress EMT, migration and invasion by decreasing EGFR, indicating TAB182 could regulate the malignant progression of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Duma N, Santana-Davila R, Molina JR (2019) Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc 94(8):1623–1640. https://doi.org/10.1016/j.mayocp.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  3. Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, Petrella F, Spaggiari L, Rosell R (2015) Non-small-cell lung cancer. Nat Rev Dis Primers 1:15009. https://doi.org/10.1038/nrdp.2015.9

    Article  PubMed  Google Scholar 

  4. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553(7689):446–454. https://doi.org/10.1038/nature25183

    Article  CAS  PubMed  Google Scholar 

  5. Arbour KC, Riely GJ (2019) Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. JAMA 322(8):764–774. https://doi.org/10.1001/jama.2019.11058

    Article  CAS  PubMed  Google Scholar 

  6. Fois SS, Paliogiannis P, Zinellu A, Fois AG, Cossu A, Palmieri G (2021) Molecular epidemiology of the main druggable genetic alterations in non-small cell lung cancer. Int J Mol Sci 22(2):612. https://doi.org/10.3390/ijms22020612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karlsen EA, Kahler S, Tefay J, Joseph SR, Simpson F (2021) Epidermal growth factor receptor expression and resistance patterns to targeted therapy in non-small cell lung cancer: a review. Cells 10(5):1206. https://doi.org/10.3390/cells10051206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389(10066):299–311. https://doi.org/10.1016/s0140-6736(16)30958-8

    Article  CAS  PubMed  Google Scholar 

  9. Sigismund S, Avanzato D, Lanzetti L (2018) Emerging functions of the EGFR in cancer. Mol Oncol 12(1):3–20. https://doi.org/10.1002/1878-0261.12155

    Article  PubMed  Google Scholar 

  10. Wang Z (2017) ErbB receptors and cancer. Methods Mol Biol 1652:3–35. https://doi.org/10.1007/978-1-4939-7219-7_1

    Article  CAS  PubMed  Google Scholar 

  11. Min H-Y, Lee H-Y (2021) Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Arch Pharmacal Res 44(2):146–164. https://doi.org/10.1007/s12272-021-01312-y

    Article  CAS  Google Scholar 

  12. Seimiya H, Smith S (2002) The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182). J Biol Chem 277(16):14116–14126. https://doi.org/10.1074/jbc.M112266200

    Article  CAS  PubMed  Google Scholar 

  13. Tan W, Guan H, Zou LH, Wang Y, Liu XD, Rang WQ, Zhou PK, Pei HD, Zhong CG (2017) Overexpression of TNKS1BP1 in lung cancers and its involvement in homologous recombination pathway of DNA double-strand breaks. Cancer Med 6(2):483–493. https://doi.org/10.1002/cam4.995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zou LH, Shang ZF, Tan W, Liu XD, Xu QZ, Song M, Wang Y, Guan H, Zhang SM, Yu L, Zhong CG, Zhou PK (2015) TNKS1BP1 functions in DNA double-strand break repair through facilitating DNA-PKcs autophosphorylation dependent on PARP-1. Oncotarget 6(9):7011–22. https://doi.org/10.18632/oncotarget.3137

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cao Y, Gao A, Li X, Min H, He C, Sun X, Ding WQ, Zhou J (2021) Elevated TAB182 enhances the radioresistance of esophageal squamous cell carcinoma through G2-M checkpoint modulation. Cancer Med 10(9):3101–3112. https://doi.org/10.1002/cam4.3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu W, Kang Y (2019) Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell 49(3):361–374. https://doi.org/10.1016/j.devcel.2019.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pearson GW (2019) Control of invasion by epithelial-to-mesenchymal transition programs during metastasis. J Clin Med 8(5):646. https://doi.org/10.3390/jcm8050646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lo H-W, Hsu S-C, Xia W, Cao X, Shih J-Y, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung M-C (2007) Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Can Res 67(19):9066–9076. https://doi.org/10.1158/0008-5472.CAN-07-0575

    Article  CAS  Google Scholar 

  19. Dinglin X, Ding L, Li Q, Liu Y, Zhang J, Yao H (2017) RYBP inhibits progression and metastasis of lung cancer by suppressing EGFR signaling and epithelial-mesenchymal transition. Transl Oncol 10(2):280–287. https://doi.org/10.1016/j.tranon.2017.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ravi J, Elbaz M, Wani NA, Nasser MW, Ganju RK (2016) Cannabinoid receptor-2 agonist inhibits macrophage induced EMT in non-small cell lung cancer by downregulation of EGFR pathway. Mol Carcinog 55(12):2063–2076. https://doi.org/10.1002/mc.22451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Zhang Z, Li R, Mao F, Sun W, Chen J, Zhang H, Bartsch JW, Shu K, Lei T (2018) ADAM12 induces EMT and promotes cell migration, invasion and proliferation in pituitary adenomas via EGFR/ERK signaling pathway. Biomed Pharmacother 97:1066–1077. https://doi.org/10.1016/j.biopha.2017.11.034

    Article  CAS  PubMed  Google Scholar 

  22. Chen DJ, Nirodi CS (2007) The epidermal growth factor receptor: a role in the repair of radiation-induced DNA damage. Clin Cancer Res 13(22 Pt 1):6555–6560. https://doi.org/10.1158/1078-0432.Ccr-07-1610

    Article  CAS  PubMed  Google Scholar 

  23. Yeung KT, Yang J (2017) Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 11(1):28–39. https://doi.org/10.1002/1878-0261.12017

    Article  PubMed  Google Scholar 

  24. Ohishi T, Yoshida H, Katori M, Migita T, Muramatsu Y, Miyake M, Ishikawa Y, Saiura A, Iemura SI, Natsume T, Seimiya H (2017) Tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton rearrangement and cancer cell invasion. Cancer Res 77(9):2328–2338. https://doi.org/10.1158/0008-5472.CAN-16-1846

    Article  CAS  PubMed  Google Scholar 

  25. Dittmann K, Mayer C, Rodemann HP (2005) Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppress DNA-PK activity. Radiother Oncol 76(2):157–161. https://doi.org/10.1016/j.radonc.2005.06.022

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura H, Kawasaki N, Taguchi M, Kabasawa K (2006) Survival impact of epidermal growth factor receptor overexpression in patients with non-small cell lung cancer: a meta-analysis. Thorax 61(2):140–145. https://doi.org/10.1136/thx.2005.042275

    Article  CAS  PubMed  Google Scholar 

  27. Selvaggi G, Novello S, Torri V, Leonardo E, De Giuli P, Borasio P, Mossetti C, Ardissone F, Lausi P, Scagliotti GV (2004) Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol 15(1):28–32. https://doi.org/10.1093/annonc/mdh011

    Article  CAS  PubMed  Google Scholar 

  28. Osarogiagbon RU, Cappuzzo F, Ciuleanu T, Leon L, Klughammer B (2015) Erlotinib therapy after initial platinum doublet therapy in patients with EGFR wild type non-small cell lung cancer: results of a combined patient-level analysis of the NCIC CTG BR.21 and SATURN trials. Transl Lung Cancer Res 4(4):465–74. https://doi.org/10.3978/j.issn.2218-6751.2015.07.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nukaga S, Yasuda H, Tsuchihara K, Hamamoto J, Masuzawa K, Kawada I, Naoki K, Matsumoto S, Mimaki S, Ikemura S, Goto K, Betsuyaku T, Soejima K (2017) Amplification of EGFR wild-type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective EGFR tyrosine kinase Inhibitors. Cancer Res 77(8):2078–2089. https://doi.org/10.1158/0008-5472.Can-16-2359

    Article  CAS  PubMed  Google Scholar 

  30. Wee P, Wang Z (2017) Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9(5):52. https://doi.org/10.3390/cancers9050052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bai L, Zhu R, Chen Z, Gao L, Zhang X, Wang X, Bai C (2006) Potential role of short hairpin RNA targeting epidermal growth factor receptor in growth and sensitivity to drugs of human lung adenocarcinoma cells. Biochem Pharmacol 71(8):1265–1271. https://doi.org/10.1016/j.bcp.2005.12.029

    Article  CAS  PubMed  Google Scholar 

  32. Liang S, Lin M, Niu L, Xu K, Wang X, Liang Y, Zhang M, Du D, Chen J (2018) Cetuximab combined with natural killer cells therapy: an alternative to chemoradiotherapy for patients with advanced non-small cell lung cancer (NSCLC). Am J Cancer Res 8(5):879–891

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nieder C, Pawinski A, Dalhaug A, Andratschke N (2012) A review of clinical trials of cetuximab combined with radiotherapy for non-small cell lung cancer. Radiat Oncol 7:3. https://doi.org/10.1186/1748-717x-7-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai WQ, Zeng LS, Wang LF, Wang YY, Cheng JT, Zhang Y, Han ZW, Zhou Y, Huang SL, Wang XW, Peng XC, Xiang Y, Ma Z, Cui SZ, Xin HW (2020) The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front Oncol 10:1249. https://doi.org/10.3389/fonc.2020.01249

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China, 31870847 and 32171238 to Pingkun Zhou, Postdoctoral Research Foundation of China, 2021M693965 to Huan He

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan He or Pingkun Zhou.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Guo, H., Jia, J. et al. Silencing TAB182 inhibits cell EMT, migration and invasion by downregulating EGFR in A549 NSCLC cells. Mol Biol Rep 50, 3073–3083 (2023). https://doi.org/10.1007/s11033-022-08176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08176-5

Keywords

Navigation