Skip to main content
Log in

Next-generation sequencing of prolidase gene identifies novel and common variants associated with low prolidase in coronary artery ectasia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Decreased collagen biosynthesis and increased collagenolysis can cause ectasia progression in the arterial walls. Prolidase is a key enzyme in collagen synthesis; a decrease in prolidase activity or level may decrease collagen biosynthesis, which may contribute to ectasia formation. Considering that, the variations in PEPD gene encoding prolidase enzyme were evaluated by analyzing next-generation sequencing (NGS) for the first time together with known risk factors in coronary artery ectasia (CAE) patients.

Methods

Molecular analysis of the PEPD gene was performed on genomic DNA by NGS in 76 CAE patients and 76 controls. The serum levels of prolidase were measured by the sandwich-ELISA technique.

Results

Serum prolidase levels were significantly lower in CAE group compared to control group, and it was significantly lower in males than females in both groups (p < 0.001). On the other hand, elevated prolidase levels were observed in CAE patients in the presence of diabetes (p < 0.001), hypertension (p < 0.05) and hyperlipidemia (p < 0.05). Logistic regression analysis demonstrated that the low prolidase level (p < 0.001), hypertension (p < 0.02) and hyperlipidemia (p < 0.012) were significantly associated with increased CAE risk. We identified four missense mutations in the PEPD gene, namely G296S, T266A, P365L and S134C (novel) that could be associated with CAE. The pathogenicity of these mutations was predicted to be “damaging” for G296S, S134C and P365L, but “benign” for T266A. We also identified a novel 5′UTR variation (Chr19:34012748 G>A) in one patient who had a low prolidase level. In addition, rs17570 and rs1061338 common variations of the PEPD gene were associated with low prolidase levels in CAE patients, while rs17569 variation was associated with high prolidase levels in both CAE and controls (p < 0.05).

Conclusions

Our findings indicate that the low serum prolidase levels observed in CAE patients is significantly associated with PEPD gene variations. It was concluded that low serum prolidase level and associated PEPD mutations may be potential biomarkers for the diagnosis of CAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Díaz-Zamudio M, Bacilio-Pérez U, Herrera-Zarza MC, Meave-González A, Alexanderson-Rosas E, Zambrana-Balta GF, Kimura-Hayama ET (2009) Coronary artery aneurysms and ectasia: role of coronary CT angiography. Radiographics 29(7):1939–1954. https://doi.org/10.1148/rg.297095048

    Article  Google Scholar 

  2. Ozturk S, Yetkin E, Waltenberger J (2018) Molecular and cellular insights into the pathogenesis of coronary artery ectasia. Cardiovasc Pathol 35:37–47. https://doi.org/10.1016/j.carpath.2018.04.005

    Article  CAS  Google Scholar 

  3. Manginas A, Cokkinos DV (2006) Coronary artery ectasias: imaging, functional assessment and clinical implications. Eur Heart J 27:1026–1031. https://doi.org/10.1093/eurheartj/ehi725

    Article  Google Scholar 

  4. Dahhan A (2015) Coronary artery ectasia in atherosclerotic coronary artery disease, inflammatory disorders, and sickle cell disease. Cardiovasc Ther 33:79–88. https://doi.org/10.1111/1755-5922.12106

    Article  CAS  Google Scholar 

  5. Yetkin E, Acikgoz N, Aksoy Y, Bariskaner E, Sivri N, Akturk E, Turhan H, Kosar F, Cehreli S (2005) Decreased carotid intima-media thickness in patients with coronary artery ectasia compared with patients with coronary artery disease. Coron Artery Dis 16:495–498. https://doi.org/10.1097/00019501-200512000-00007

    Article  Google Scholar 

  6. Androulakis AE, Andrikopoulos GK, Kartalis AN, Stougiannos PN, Katsaros AA, Syrogiannidis DN, Tapanlis EN, Stefanadis C, Kallikazaros IE (2004) Relation of coronary artery ectasia to diabetes mellitus. Am J Cardiol 93:1165–1167. https://doi.org/10.1016/j.amjcard.2004.01.049

    Article  Google Scholar 

  7. Huang QJ, Liu J, Chen MH, Li JJ (2014) Relation of diabetes to coronary artery ectasia: a meta-analysis study. Anatol J Cardiol 14:322–327. https://doi.org/10.5152/akd.2014.5327

    Article  Google Scholar 

  8. Shantikumar S, Ajjan R, Porter KE, Scott DJ (2010) Diabetes and the abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 39:200–207. https://doi.org/10.1016/j.ejvs.2009.10.014

    Article  CAS  Google Scholar 

  9. De Rango P, Farchioni L, Fiorucci B, Lenti M (2014) Diabetes and abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 47:243–261. https://doi.org/10.1016/j.ejvs.2013.12.007

    Article  Google Scholar 

  10. Takagi H, Umemoto T (2015) A contemporary meta-analysis of the association of diabetes with abdominal aortic aneurysm. Int Angiol 34:375–382

    CAS  Google Scholar 

  11. Antoniadis AP, Chatzizisis YS, Giannoglou GD (2008) Pathogenetic mechanisms of coronary ectasia. Int J Cardiol 130:335–343. https://doi.org/10.1016/j.ijcard.2008.05.071

    Article  Google Scholar 

  12. Ge J, Erbel R, Zamorano J, Koch L, Kearney P, Görge G, Gerber T, Meyer J (1993) Coronary artery remodeling in atherosclerotic disease: an intravascular ultrasonic study in vivo. Coron Artery Dis 4:981–986. https://doi.org/10.1097/00019501-199311000-00005

    Article  CAS  Google Scholar 

  13. Bhatnager R, Dang AS (2018) Comprehensive in-silico prediction of damage associated SNPs in human prolidase gene. Sci Rep 8:9430. https://doi.org/10.1038/s41598-018-27789-0

    Article  CAS  Google Scholar 

  14. Ely JT (2004) Aneurysm: prevention and nonsurgical repair. Med Sci Monit 10:HY1–HY4

    Google Scholar 

  15. Dawson RC, Krisht AF, Barrow DL, Joseph GJ, Shengelaia GG, Bonner G (1995) Treatment of experimental aneurysms using collagen-coated microcoils. Neurosurgery 36(1):133–139

    Article  CAS  Google Scholar 

  16. Gavish L, Beeri R, Gilon D, Rubinstein C, Berlatzky Y, Gavish LY, Bulut A, Harlev M, Reissman P, Gertz SD (2014) Inadequate reinforcement of transmedial disruptions at branch points subtends aortic aneurysm formation in apolipoprotein-E-deficient mice. Cardiovasc Pathol 23:152–159. https://doi.org/10.1016/j.carpath.2013.12.005

    Article  CAS  Google Scholar 

  17. Surazynski A, Miltyk W, Palka J, Phang JM (2008) Prolidase-dependent regulation of collagen biosynthesis. Amino Acids 35:731–738. https://doi.org/10.1007/s00726-008-0051-8

    Article  CAS  Google Scholar 

  18. Viglio S, Annovazzi L, Conti B, Genta I, Perugini P, Zanone C, Casado B, Cetta G, Iadarola P (2006) The role of emerging techniques in the investigation of prolidase deficiency: from diagnosis to the development of a possible therapeutical approach. J Chromatogr B 832:1–8. https://doi.org/10.1016/j.jchromb.2005.12.049

    Article  CAS  Google Scholar 

  19. Phang JM, Liu W, Zabirnyk O (2010) Proline metabolism and microenvironmental stress. Annu Rev Nutr 30:441–463. https://doi.org/10.1146/annurev.nutr.012809.104638

    Article  CAS  Google Scholar 

  20. Akcakoyun M, Pala S, Esen O, Acar G, Kargin R, Emiroglu Y, Tigen K, Ozcan O, Ipcioglu OM, Esen AM (2010) Dilatation of the ascending aorta is associated with low serum prolidase activity. Tohoku J Exp Med 220:273–277. https://doi.org/10.1620/tjem.220.273

    Article  CAS  Google Scholar 

  21. Bakuy V, Gursoy M, Hokenek F, Gedikbasi A, Atay M, Nurdag A, Caglar IM, Ugurlucan M, Akgul A (2014) Prolidase activity in patients with coronary artery aneurysm. Angiology 65:574–579. https://doi.org/10.1177/0003319713491136

    Article  CAS  Google Scholar 

  22. Aktürk E, Aşkın L, Nacar H, Taşolar MH, Türkmen S, Çetin M, Bozkurt M (2018) Association of serum prolidase activity in patients with isolated coronary artery ectasia. Anatol J Cardiol 19:110–116. https://doi.org/10.14744/AnatolJCardiol.2017.8160

    Article  Google Scholar 

  23. Demopoulos VP, Olympios CD, Fakiolas CN, Pissimissis EG, Economides NM, Adamopoulou E, Foussas SG, Cokkinos DV (1997) The natural history of aneurysmal coronary artery disease. Heart 78:136–141. https://doi.org/10.1136/hrt.78.2.136

    Article  CAS  Google Scholar 

  24. Tanoue A, Endo F, Matsuda I (1990) Structural organization of the gene for human prolidase (peptidase D) and demonstration of a partial gene deletion in a patient with prolidase deficiency. J Biol Chem 265:11306–11311

    Article  CAS  Google Scholar 

  25. Gülec S, Aras O, Atmaca Y, Akyürek O, Hanson NQ, Sayin T, Tsai MY, Akar N, Oral D (2003) Deletion polymorphism of the angiotensin I converting enzyme gene is a potent risk factor for coronary artery ectasia. Heart 89:213–214. https://doi.org/10.1136/heart.89.2.213

    Article  Google Scholar 

  26. Uyarel H, Okmen E, Tartan Z, Kasikcioglu H, Dayi SU, Karabulut A, Uzunlar B, Samur H, Cam N (2005) The role of angiotensin converting enzyme genotype in coronary artery ectasia. Int Heart J 46:89–96. https://doi.org/10.1536/ihj.46.89

    Article  CAS  Google Scholar 

  27. Ekmekçi A, Ozcan KS, Abaci N, Güngör B, Osmonov D, Tosu R, Toprak E, Güleç C, Ustek D, Oz D, Eren M (2013) The relationship between coronary artery ectasia and eNOS intron 4a/b gene polymorphisms. Acta Cardiol 68:19–22. https://doi.org/10.1080/ac.68.1.2959627

    Article  Google Scholar 

  28. Arif Yalcin A, Faruk Akturk I, Celik O, Erturk M, Sabri Hancer V, Yalcin B, Isiksacan N, Uzun F, Ozbey Ozyilmaz S, Biyik I (2014) Coronary artery ectasia is associated with the c.894G>T (Glu298Asp) polymorphism of the endothelial nitric oxide synthase gene. Tohoku J Exp Med 232:137–144. https://doi.org/10.1620/tjem.232.137

    Article  CAS  Google Scholar 

  29. Hsu PC, Wang CL, Su HM, Juo SH, Lin TH, Voon WC, Shin SJ, Lai WT, Sheu SH (2014) The hOGG1 Ser326Cys gene polymorphism and the risk of coronary ectasia in the Chinese population. Int J Mol Sci 15:1671–1682. https://doi.org/10.3390/ijms15011671

    Article  CAS  Google Scholar 

  30. Noori MR, Zhang B, Pan L (2019) Is KCNH1 mutation related to coronary artery ectasia. BMC Cardiovasc Disord 19:296. https://doi.org/10.1186/s12872-019-01276-4

    Article  Google Scholar 

  31. Han F, Yan B (2021) Three novel ATG16L1 mutations in a patient with acute myocardial infarction and coronary artery ectasia: a case report. Medicine (Baltimore) 100:e24497. https://doi.org/10.1097/MD.0000000000024497

    Article  Google Scholar 

  32. Yalım Z, Tutgun Onrat S, Emren SV, Dural İE, Avşar A, Onrat E (2020) Analysis of thrombophilic gene mutations in coronary artery ectasia. Turk Kardiyol Dern Ars 48:368–373. https://doi.org/10.5543/tkda.2019.99789

    Article  Google Scholar 

  33. Demirbag R, Yildiz A, Gur M, Yilmaz R, Elçi K, Aksoy N (2007) Serum prolidase activity in patients with hypertension and its relation with left ventricular hypertrophy. Clin Biochem 40:1020–1025. https://doi.org/10.1016/j.clinbiochem.2007.05.015

    Article  CAS  Google Scholar 

  34. Yildiz A, Demirbag R, Yilmaz R, Gur M, Altiparmak IH, Akyol S, Aksoy N, Ocak AR, Erel O (2008) The association of serum prolidase activity with the presence and severity of coronary artery disease. Coron Artery Dis 19:319–325. https://doi.org/10.1097/MCA.0b013e32830042ba

    Article  Google Scholar 

  35. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, Legako RD, Leon DF, Murray JA, Nissen SE, Pepine CJ, Watson RM, Ritchie JL, Gibbons RJ, Cheitlin MD, Gardner TJ, Garson A Jr, Russell RO Jr, Ryan TJ, Smith SC Jr (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33:1756–1824. https://doi.org/10.1016/s0735-1097(99)00126-6

    Article  CAS  Google Scholar 

  36. Markis JE, Joffe CD, Cohn PF, Feen DJ, Herman MV, Gorlin R (1976) Clinical significance of coronary arterial ectasia. Am J Cardiol 37:217–222. https://doi.org/10.1016/0002-9149(76)90315-5

    Article  CAS  Google Scholar 

  37. Fujii T, Sakai K, Kimura M, Nakano M, Ohno Y, Nakazawa G, Shinozaki N, Matsukage T, Yoshimachi F, Ikari Y (2017) Coronary flow improvement following unsuccessful primary percutaneous coronary intervention in ST-elevation myocardial infarction with diffuse ectatic coronary artery. Eur Heart J Acute Cardiovasc Care 6:623–631. https://doi.org/10.1177/2048872616633850

    Article  Google Scholar 

  38. Doi T, Kataoka Y, Noguchi T, Shibata T, Nakashima T, Kawakami S, Nakao K, Fujino M, Nagai T, Kanaya T, Tahara Y, Asaumi Y, Tsuda E, Nakai M, Nishimura K, Anzai T, Kusano K, Shimokawa H, Goto Y, Yasuda S (2017) Coronary artery ectasia predicts future cardiac events in patients with acute myocardial infarction. Arterioscler Thromb Vasc Biol 37:2350–2355. https://doi.org/10.1161/ATVBAHA.117.309683

    Article  CAS  Google Scholar 

  39. Ipek G, Gungor B, Karatas MB, Onuk T, Keskin M, Tanik O, Hayiroglu MI, Oz A, Borklu EB, Bolca O (2016) Risk factors and outcomes in patients with ectatic infarct-related artery who underwent primary percutaneous coronary intervention after ST elevated myocardial infarction. Catheter Cardiovasc Interv 88:748–753. https://doi.org/10.1002/ccd.26553

    Article  Google Scholar 

  40. Qin Y, Tang C, Ma C, Yan G (2019) Risk factors for coronary artery ectasia and the relationship between hyperlipidemia and coronary artery ectasia. Coron Artery Dis 30:211–215. https://doi.org/10.1097/MCA.0000000000000709

    Article  Google Scholar 

  41. Yetkin E, Ozturk S (2018) Dilating vascular diseases: pathophysiology and clinical aspects. Int J Vasc Med 2018:9024278. https://doi.org/10.1155/2018/9024278

    Article  CAS  Google Scholar 

  42. Phang JM, Donald SP, Pandhare J, Liu Y (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690. https://doi.org/10.1007/s00726-008-0063-4

    Article  CAS  Google Scholar 

  43. Palka JA, Phang JM (1997) Prolidase activity in fibroblasts is regulated by interaction of extracellular matrix with cell surface integrin receptors. J Cell Biochem 67:166–175. https://doi.org/10.1002/(sici)1097-4644(19971101)67:2%3c166::aid-jcb2%3e3.0.co;2-v

    Article  CAS  Google Scholar 

  44. Sezen Y, Bas M, Altiparmak H, Yildiz A, Buyukhatipoglu H, Faruk Dag O, Kaya Z, Aksoy N (2010) Serum prolidase activity in idiopathic and ischemic cardiomyopathy patients. J Clin Lab Anal 24:213–218. https://doi.org/10.1002/jcla.20388

    Article  CAS  Google Scholar 

  45. Erkus E, Altiparmak H, Sezen H, Kaya Z, Gunebakmaz O, Sezen Y, Demirbag R (2015) Serum prolidase activity in patients with left ventricular diastolic dysfunction. Acta Cardiol 70:51–57. https://doi.org/10.1080/ac.70.1.3064593

    Article  Google Scholar 

  46. Kitchener RL, Grunden AM (2012) Prolidase function in proline metabolism and its medical and biotechnological applications. J Appl Microbiol 113:233–247. https://doi.org/10.1111/j.1365-2672.2012.05310.x

    Article  CAS  Google Scholar 

  47. Lupi A, Rossi A, Campari E, Pecora F, Lund AM, Elcioglu NH, Gultepe M, Di Rocco M, Cetta G, Forlino A (2006) Molecular characterisation of six patients with prolidase deficiency: identification of the first small duplication in the prolidase gene and of a mutation generating symptomatic and asymptomatic outcomes within the same family. J Med Genet 43:e58. https://doi.org/10.1136/jmg.2006.043315

    Article  CAS  Google Scholar 

  48. Spodenkiewicz M, Spodenkiewicz M, Cleary M, Massier M, Fitsialos G, Cottin V, Jouret G, Poirsier C, Doco-Fenzy M, Lèbre AS (2020) Clinical genetics of prolidase deficiency: an updated review. Biology (Basel) 9:108. https://doi.org/10.3390/biology9050108

    Article  CAS  Google Scholar 

  49. OMIM (2021) PEPTIDASE D; PEPD. https://www.omim.org/entry/613230. Accessed 26 Apr 2021

  50. Wilk P, Wątor E, Weiss MS (2021) Prolidase—a protein with many faces. Biochimie 183:3–12. https://doi.org/10.1016/j.biochi.2020.09.017

    Article  CAS  Google Scholar 

  51. Lillvis JH, Kyo Y, Tromp G, Lenk GM, Li M, Lu Q Jr, Igo RP, Sakalihasan N, Ferrell RE, Schworer CM, Gatalica Z, Land S, Kuivaniemi H (2011) Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19. BMC Med Genet 12:14. https://doi.org/10.1186/1471-2350-12-14

    Article  CAS  Google Scholar 

  52. Sabuncu T, Boduroglu O, Eren MA, Torun AN, Aksoy N (2016) The value of serum prolidase activity in progression of microalbuminuria in patients with type 2 diabetes mellitus. J Clin Lab Anal 30:557–562. https://doi.org/10.1002/jcla.21902

    Article  CAS  Google Scholar 

  53. Tabur S, Oguz E, Eren MA, Korkmaz H, Savas E, Aksoy N, Sabuncu T (2014) Serum prolidase activity is associated with non-diabetic metabolic syndrome. Diabetol Metab Syndr 6:142. https://doi.org/10.1186/1758-5996-6-142

    Article  CAS  Google Scholar 

  54. Eser B, Doğan I, Doğan I, Hüseyin Kayadibi H (2021) The association of serum prolidase enzyme activity with the presence of familial mediterranean fever. Turk J Nephrol 30:37–42. https://doi.org/10.5152/turkjnephrol.2021.4421

    Article  CAS  Google Scholar 

  55. Miltyk W, Anchim T, Wolczynski S, Palka J (1999) Estrogen-dependent regulation of prolidase activity in breast cancer MCF-7 cells. Gynecol Endocrinol 13:166–174. https://doi.org/10.3109/09513599909167551

    Article  CAS  Google Scholar 

  56. Surazynski A, Miltyk W, Prokop I, Palka J (2013) The effect of estrogen on prolidase-dependent regulation of HIF-1α expression in breast cancer cells. Mol Cell Biochem 379:29–36. https://doi.org/10.1007/s11010-013-1623-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our patients and healthy control subjects who participated in the study.

Funding

The present study was supported by a Grant from the Scientific Research Projects Coordination Unit of Istanbul University (Project Nos.: TDK-2018-31311 and TYO-2019-32124).

Author information

Authors and Affiliations

Authors

Contributions

KCP-U: Methodology, Investigation, Writing-original draft. EIA: Investigation, Validation. AY: Conceptualization, data curation. OK: Clinic examinations. OSS: Clinic examinations. SO: Clinic examinations. FY: Data analysis and manuscript preparation. OO: Supervision and formal analysis. HY-A: Funding acquisition, Project administration, Methodology, Writing-review&editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hulya Yilmaz-Aydogan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was in accordance with the Declaration of Helsinki for medical research involving human subjects. The protocol was approved by the Ethics Committee of the Istanbul University, Istanbul Faculty of Medicine (Approval Number: 2018/714).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Supplementary file2 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekkoc-Uyanik, K.C., Aslan, E.I., Kilicarslan, O. et al. Next-generation sequencing of prolidase gene identifies novel and common variants associated with low prolidase in coronary artery ectasia. Mol Biol Rep 50, 1349–1365 (2023). https://doi.org/10.1007/s11033-022-08142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08142-1

Keywords

Navigation