Skip to main content
Log in

Reference genes selection for expression studies in Maconellicoccus hirsutus (Green) (Pseudococcidae: Hemiptera) under specific experimental conditions

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Maconellicoccus hirsutus is a destructive pest which causes severe losses of agricultural and horticultural crops. For the management of M. hirsutus, many insecticides have been used and it has been exposed to insufficient dosage or uneven spray coverage which resulted in the development of insecticide resistance. Xenobiotic metabolism can be better understood with the help of gene expression studies by unveiling the underlying molecular mechanisms. The qRT-PCR is the simplest method to analyse gene expression, however, it highly relies on suitable reference genes concerning the different experimental conditions.

Methods and results

We evaluated the stability of five reference genes in two sets of experimental conditions viz. developmental stages (nymphs and adults) and agrochemical stress (GA3 and Buprofezin sprayed) against M. hirsutus, using different softwares—NormFinder, geNorm, BestKeeper, and RefFinder. The study revealed that ATP51a and GAPDH can be used as reference genes for gene expression studies when exposed to Gibberellic acid. Additionally, the study revealed that the ideal pair of reference genes for data validation in M. hirsutus treated with Buprofezin was GAPDH and β-tubulin. The ideal reference gene combination for various developmental stages was found to be 28S and Actin.

Conclusion

According to the study, GAPDH can be utilized as a reliable reference gene in the agrochemical (GA3 and Buprofezin) exposure set. The genes can be utilized as a suitable reference for qRT-PCR gene expression studies of xenobiotic metabolism to understand the underlying molecular mechanism, which will help further to design suitable management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Green EE (1908) Remarks on Indian scale insects (Coccidae), Part III. With a catalogue of all species hitherto recorded from the Indian continent. Remarks on Indian scale insects (Coccidae), part III With a catalogue of all species hitherto recorded from the Indian continent. Entomol Ser 2:15–46

    Google Scholar 

  2. Chong JH, Aristizábal LF, Arthurs SP (2015) Biology and management of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) on ornamental plants. J Integr Pest Manag 6:5

    Article  Google Scholar 

  3. Kairo MTK, Pollard GV, Peterkin DD, Lopez VF (2000) Biological control of the hibiscus mealybug, Maconellicoccus hirsutus Green (Hemiptera: Pseudococcidae) in the Caribbean. Integr pest manag rev 5:241–254

    Article  Google Scholar 

  4. Ranjan R (2006) Economic impacts of pink hibiscus mealybug in Florida and the United States. Stoch Env Res Risk Assess 20:353–362

    Article  Google Scholar 

  5. Angu AR, Reddy CN, Kumari DA, Ramesh S (2017) Seasonal incidence of mealybug, Maconellicoccus hirsutus (Green) on grape. Int J Curr Microbiol App Sci 6:1629–1635

    Article  Google Scholar 

  6. Kumari VN (2014) Ecofriendly technologies for disease and pest management in mulberry-a review. IOSR J Agric Vet Sci 7:1–6

    Article  Google Scholar 

  7. Xie W, Meng Q, Wu Q et al (2012) Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance. PLoS ONE 7:e35181

    Article  CAS  Google Scholar 

  8. Bao YY, Wang Y, Wu WJ et al (2012) De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response. Genomics 99:256–264

    Article  CAS  Google Scholar 

  9. Zhou C, Yang H, Wang Z et al (2018) Comparative transcriptome analysis of Sogatella furcifera (Horváth) exposed to different insecticides. Sci Rep 8:8773. https://doi.org/10.1038/s41598-018-27062-4

    Article  CAS  Google Scholar 

  10. Gao H, Zhu X, Li G et al (2021) RNA Sequencing Analysis of Metopolophium dirhodum (Walker)(Hemiptera: Aphididae) reveals the mechanism underlying insecticide resistance. Front Sustain Food Syst 5:639841

    Article  Google Scholar 

  11. Zhang LP, Yao SM (2017) Insecticide resistance status and detoxification enzymes of wheat aphids Sitobion avenae and Rhopalosiphum padi. Sci China Life Sci 60(8):927–930. https://doi.org/10.1007/s11427-017-9105-x

    Article  CAS  Google Scholar 

  12. Xu Z, Zhu W, Liu Y et al (2014) Analysis of insecticide resistance-related genes of the carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome. PLoS ONE 9:e94779

    Article  Google Scholar 

  13. Liu B, Jiang G, Zhang Y et al (2011) Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). PLoS ONE 6:e28516

    Article  CAS  Google Scholar 

  14. Saraiva KDC, Fernandes de Melo D, Morais VD et al (2014) Selection of suitable soybean EF1α genes as internal controls for real-time PCR analyses of tissues during plant development and under stress conditions. Plant Cell Rep 33:1453–1465

    Article  CAS  Google Scholar 

  15. Lu Y, Yuan M, Gao X et al (2013) Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE 8:e68059

    Article  CAS  Google Scholar 

  16. Bhatia V, Bhattacharya R, Uniyal PL et al (2012) Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PLoS ONE 7(10):e46343

    Article  CAS  Google Scholar 

  17. Li R, Xie W, Wang S et al (2013) Reference gene selection for qRT-PCR analysis in the sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 8:e53006

    Article  CAS  Google Scholar 

  18. Puinean AM, Foster SP, Oliphant L et al (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 6:e1000999

    Article  Google Scholar 

  19. Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54:391–406

    Article  CAS  Google Scholar 

  20. Gutierrez L, Mauriat M, Pelloux J et al (2008) Towards a systematic validation of references in real-time RT-PCR. Plant Cell 20:1734–1735

    Article  CAS  Google Scholar 

  21. Vandesompele J, de Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Article  Google Scholar 

  22. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  Google Scholar 

  23. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  Google Scholar 

  24. Liang P, Guo Y, Zhou X, Gao X (2014) Expression profiling in Bemisia tabaci under insecticide treatment: indicating the necessity for custom reference gene selection. PLoS ONE 9:e87514

    Article  Google Scholar 

  25. Thellin O, Zorzi W, Lakaye B et al (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  CAS  Google Scholar 

  26. Mueller R, Nolan T, Pfaf MW et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611622

    Google Scholar 

  27. Taylor S, Wakem M, Dijkman G et al (2010) A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods 50:S1–S5. https://doi.org/10.1016/j.ymeth.2010.01.005

    Article  CAS  Google Scholar 

  28. Wang W, Ling X, Bashir NH et al (2022) Selection and evaluation of reference genes for quantitative real-time PCR analysis in lac insect (Kerria lacca). Entomol Res 52:57–67

    Article  CAS  Google Scholar 

  29. Shen CH, Peng LJ, Zhang YX et al (2022) Reference genes for expression analyses by qRT-PCR in Phthorimaea operculella (Lepidoptera: Gelechiidae). Insects 13(2):140. https://doi.org/10.3390/insects13020140

    Article  Google Scholar 

  30. Li M, Li X, Wang C et al (2021) Selection and validation of reference genes for qRT-PCR analysis of Rhopalosiphum padi (Hemiptera: Aphididae). Front Physiol 12:663338

    Article  Google Scholar 

  31. Fu X, Meyer-Rochow VB (2021) Selection and validation of suitable reference genes for RT-qPCR analysis in the rare aquatic firefly Aquatica leii (Coleoptera: Lampyridae). Insects 12:359

    Article  Google Scholar 

  32. Koramutla MK, Aminedi R, Bhattacharya R (2016) Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt). Sci Rep 6:1–10

    Article  Google Scholar 

  33. Yang X, Pan H, Yuan L, Zhou X (2018) Reference gene selection for RT-qPCR analysis in Harmonia axyridis, a global invasive lady beetle. Sci Rep 8:1–10

    Google Scholar 

  34. Teng X, Zhang Z, He G et al (2012) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in four lepidopteran insects. J Insect Sci 12:60

    Article  CAS  Google Scholar 

  35. Barros Rodrigues T, Khajuria C, Wang H et al (2014) Validation of reference housekeeping genes for gene expression studies in western corn rootworm (Diabrotica virgifera virgifera). PLoS ONE 9:e109825

    Article  Google Scholar 

  36. Kang Z, Liu F, Tian H et al (2017) Evaluation of the reference genes for expression analysis using quantitative real-time polymerase chain reaction in the green peach aphid, Myzus persicae. Insect Sci 24:222–234

    Article  CAS  Google Scholar 

  37. Sun W, Jin Y, He L et al (2010) Suitable reference gene selection for different strains and developmental stages of the carmine spider mite, Tetranychus cinnabarinus, using quantitative real-time PCR. J Insect Sci 10(1):208

    CAS  Google Scholar 

  38. Chang Y-W, Chen J-Y, Lu M-X et al (2017) Selection and validation of reference genes for quantitative real-time PCR analysis under different experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae). PLoS ONE 12:e0181862

    Article  Google Scholar 

  39. Pan H, Yang X, Bidne K et al (2015) Selection of reference genes for RT-qPCR analysis in the monarch butterfly, Danaus plexippus (L.), a migrating bio-indicator. PLoS ONE 10:e0129482

    Article  Google Scholar 

  40. Li HB, Dai CG, Zhang CR et al (2018) Screening potential reference genes for quantitative real-time PCR analysis in the oriental armyworm, Mythimna separata. PLoS ONE 13:e0195096

    Article  Google Scholar 

  41. Zhang S, An S, Li Z et al (2015) Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). Gene 555:393–402

    Article  CAS  Google Scholar 

  42. Kariyanna B, Prabhuraj A, Asokan R et al (2020) Identification of suitable reference genes for normalization of RT-qPCR data in eggplant fruit and shoot borer (Leucinodes orbonalis Guenée). Biologia (Bratisl) 75:289–297

    Article  CAS  Google Scholar 

  43. Xie LC, Tian JC, Lu YH et al (2021) Selection of reference genes for RT-qPCR analysis in Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J Asia Pac Entomol 24:679–687

    Article  Google Scholar 

  44. Pan H, Yang X, Siegfried BD, Zhou X (2015) A comprehensive selection of reference genes for RT-qPCR analysis in a predatory lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae). PLoS ONE 10:e0125868

    Article  Google Scholar 

  45. Liu Y, Su H, Li R et al (2017) Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. BMC Genom 18:974. https://doi.org/10.1186/s12864-017-4355-5

    Article  CAS  Google Scholar 

  46. Poupardin R, Riaz MA, Vontas J et al (2010) Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti. Insect Mol Biol 19:185–193. https://doi.org/10.1111/J.1365-2583.2009.00967.X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr Mei Zhang, Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, China for providing the geNorm analysis software. KVNR acknowledges the Senior Research Fellowship from the Indian Council of Agricultural Research. The authors are grateful to the Director, ICAR-NBAIR, Bengaluru, India for the help and support & providing the required facilities for the research.

Funding

Funding information is not applicable. No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

GRG, TV and DKR contributed to the study’s conception and design. AA and JP analysed the transcriptome data, provided the primer sequences and helped with primer designing. KVNR and SS performed material preparation, data collection, and analysis. The first draft of the manuscript was written by KVNR. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gandhi Gracy Ramasamy.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1517 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.V.N., Ramasamy, G.G., Agrawal, A. et al. Reference genes selection for expression studies in Maconellicoccus hirsutus (Green) (Pseudococcidae: Hemiptera) under specific experimental conditions. Mol Biol Rep 50, 1221–1230 (2023). https://doi.org/10.1007/s11033-022-08120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08120-7

Keywords

Navigation