Skip to main content
Log in

Strontium ion attenuates osteoarthritis through inhibiting senescence and enhancing autophagy in fibroblast-like synoviocytes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) mainly occurs in the elderly population and seriously affects their quality of life (QOL). Strontium (Sr) ions have shown positive effects on bone tissue and are promising for OA treatment. However, the adequate treatment dosage and underlying mechanisms are unclear. This study investigated the effects and underlying mechanisms of different concentrations of Sr ions in a mouse model of OA induced by destabilization of the medial meniscus (DMM) surgery. DMM-induced OA mice received intra-articular injections of different concentrations of Sr ions, and a suitable concentration of Sr ions was found to improve OA. Furthermore, we investigated the mechanism by which Sr ions mediate senescence and autophagy in fibroblast-like synoviocytes (FLSs) in the synovial tissues of DMM-induced OA mice. OA mice treated with 10 µl of 5 mmol/L SrCl2 showed the greatest improvement in pain-related behavior and cartilage damage. In addition, in vivo and in vitro experiments revealed that Sr ions inhibit senescence and improve the autophagic function of FLSs. We also found that enhancement of the autophagic function of FLSs could effectively slow down senescence. Therefore, we show that Sr ions through the AMPK/mTOR/LC3B-II signal axis improve FLSs autophagy function and delay FLSs senescence, and furthermore, improve OA. These results suggest that senescence and autophagy function of FLSs may serve as promising targets for OA treatment, and that Sr ions may inhibit OA progression through these two targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramoff B, Caldera FE (2020) Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am 104(2):293–311. https://doi.org/10.1016/j.mcna.2019.10.007

    Article  Google Scholar 

  2. Sacitharan PK (2019) Ageing and Osteoarthritis. Subcell Biochem 91:123–159. https://doi.org/10.1007/978-981-13-3681-2_6

    Article  CAS  Google Scholar 

  3. Jones IA, Togashi R, Wilson ML et al (2019) Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol 15(2):77–90. https://doi.org/10.1038/s41584-018-0123-4

    Article  Google Scholar 

  4. Liang Y, Xu X, Xu L et al (2021) Non-surgical osteoarthritis therapy, intra-articular drug delivery towards clinical applications. J Drug Target 29(6):609–616. https://doi.org/10.1080/1061186x.2020.1870231

    Article  CAS  Google Scholar 

  5. Chen G, Xu B, Xie J et al (2019) Comparison of Clinical and Biomechanical Outcomes between Partial Fibulectomy and Drug Conservative Treatment for Medial Knee Osteoarthritis. Biomed Res Int 2019:4575424. https://doi.org/10.1155/2019/4575424

  6. Hunter DJ, Bierma-Zeinstra S (2019) Osteoarthritis. Lancet 393(10182):1745–1759. https://doi.org/10.1016/s0140-6736(19)30417-9

    Article  CAS  Google Scholar 

  7. Huang H, Lou Z, Zheng S et al (2022) Intra-articular drug delivery systems for osteoarthritis therapy: shifting from sustained release to enhancing penetration into cartilage. Drug Deliv 29(1):767–791. https://doi.org/10.1080/10717544.2022.2048130

    Article  CAS  Google Scholar 

  8. Felson DT, McLaughlin S, Goggins J et al (2003) Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 139(5 Pt 1):330–336. https://doi.org/10.7326/0003-4819-139-5_part_1-200309020-00008

    Article  Google Scholar 

  9. Sharma AR, Jagga S, Chakraborty C et al (2020) Fibroblast-Like-Synoviocytes Mediate Secretion of Pro-Inflammatory Cytokines via ERK and JNK MAPKs in Ti-Particle-Induced Osteolysis. Mater (Basel) 13(16). https://doi.org/10.3390/ma13163628

  10. Park H, Lee HR, Shin HJ et al (2022) p16INK4a-siRNA nanoparticles attenuate cartilage degeneration in osteoarthritis by inhibiting inflammation in fibroblast-like synoviocytes. Biomater Sci 10(12):3223–3235. https://doi.org/10.1039/d1bm01941d

    Article  CAS  Google Scholar 

  11. Chen X, Gong W, Shao X et al (2022) METTL3-mediated m(6)A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Ann Rheum Dis 81(1):87–99. https://doi.org/10.1136/annrheumdis-2021-221091

    Article  CAS  Google Scholar 

  12. Malaise O, Paulissen G, Deroyer C et al (2021) Influence of Glucocorticoids on Cellular Senescence Hallmarks in Osteoarthritic Fibroblast-like Synoviocytes. J Clin Med 10(22). https://doi.org/10.3390/jcm10225331

  13. Greene MA, Loeser RF (2015) Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 23(11):1966–1971. https://doi.org/10.1016/j.joca.2015.01.008

    Article  CAS  Google Scholar 

  14. Wong SQ, Kumar AV, Mills J et al (2020) Autophagy in aging and longevity. Hum Genet 139(3):277–290. https://doi.org/10.1007/s00439-019-02031-7

    Article  Google Scholar 

  15. Mizushima N, Levine B (2020) Autophagy in Human Diseases. N Engl J Med 383(16):1564–1576. https://doi.org/10.1056/NEJMra2022774

    Article  CAS  Google Scholar 

  16. Li X, Yang X, Maimaitijuma T et al (2019) Plant homeodomain finger protein 23 inhibits autophagy and promotes apoptosis of chondrocytes in osteoarthritis. Chin Med J (Engl) 132(21):2581–2587. https://doi.org/10.1097/cm9.0000000000000402

    Article  CAS  Google Scholar 

  17. Guillén MI, Tofiño-Vian M, Silvestre A et al (2021) Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells. J Orthop Translat 30:61–69. https://doi.org/10.1016/j.jot.2021.08.003

    Article  Google Scholar 

  18. Wang Y, Zhang H (2019) Regulation of Autophagy by mTOR Signaling Pathway. Adv Exp Med Biol 1206:67–83. https://doi.org/10.1007/978-981-15-0602-4_3

    Article  CAS  Google Scholar 

  19. Pupyshev AB, Klyushnik TP, Akopyan AA et al (2022) Disaccharide trehalose in experimental therapies for neurodegenerative disorders: Molecular targets and translational potential. Pharmacol Res 183:106373. https://doi.org/10.1016/j.phrs.2022.106373

    Article  CAS  Google Scholar 

  20. Deeks ED, Dhillon S (2010) Spotlight on strontium ranelate: in postmenopausal osteoporosis. Drugs Aging 27(9):771–773. https://doi.org/10.2165/11206440-000000000-00000

    Article  CAS  Google Scholar 

  21. Han W, Fan S, Bai X et al (2017) Strontium ranelate, a promising disease modifying osteoarthritis drug. Expert Opin Investig Drugs 26(3):375–380. https://doi.org/10.1080/13543784.2017.1283403

    Article  CAS  Google Scholar 

  22. Deng C, Zhu H, Li J et al (2018) Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface. Theranostics 8(7):1940–1955. https://doi.org/10.7150/thno.23674

    Article  CAS  Google Scholar 

  23. Matyas JJ, O’Driscoll CM, Yu L et al (2017) Truncated TrkB.T1-Mediated Astrocyte Dysfunction Contributes to Impaired Motor Function and Neuropathic Pain after Spinal Cord Injury. J Neurosci 37(14):3956–3971. https://doi.org/10.1523/jneurosci.3353-16.2017

    Article  CAS  Google Scholar 

  24. Kato S, Wakabayashi H, Nakagawa T et al (2020) Teriparatide improves pain-related behavior and prevents bone loss in ovariectomized mice. J Orthop Surg (Hong Kong) 28(1):2309499019893194. https://doi.org/10.1177/2309499019893194

    Article  Google Scholar 

  25. Glasson SS, Chambers MG, Van Den Berg WB et al (2010) The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil 18 Suppl 3S17–23. https://doi.org/10.1016/j.joca.2010.05.025

  26. Liu Y, Yang Y, Lin Y et al (2022) N(6) -methyladenosine-modified circRNA RERE modulates osteoarthritis by regulating β-catenin ubiquitination and degradation. https://doi.org/10.1111/cpr.13297. Cell Prolif:e13297

  27. Isvoranu G, Manole E, Neagu M (2021) Gait Analysis Using Animal Models of Peripheral Nerve and Spinal Cord Injuries. Biomedicines 9(8). https://doi.org/10.3390/biomedicines9081050

  28. Walter J, Kovalenko O, Younsi A et al (2020) The CatWalk XT® is a valid tool for objective assessment of motor function in the acute phase after controlled cortical impact in mice. Behav Brain Res 392:112680. https://doi.org/10.1016/j.bbr.2020.112680

    Article  Google Scholar 

  29. Fouasson-Chailloux A, Dauty M, Bodic B et al (2021) Posttraumatic Osteoarthritis Damage in Mice: From Histological and Micro-Computed Tomodensitometric Changes to Gait Disturbance. Cartilage 13(2suppl):1478s–1489s. https://doi.org/10.1177/19476035211053821

    Article  CAS  Google Scholar 

  30. Tschon M, Salamanna F, Martini L et al (2020) Boosting the Intra-Articular Efficacy of Low Dose Corticosteroid through a Biopolymeric Matrix: An In Vivo Model of Osteoarthritis. Cells 9(7). https://doi.org/10.3390/cells9071571

  31. Parvathy SS, Masocha W (2013) Gait analysis of C57BL/6 mice with complete Freund’s adjuvant-induced arthritis using the CatWalk system. BMC Musculoskelet Disord 14:14. https://doi.org/10.1186/1471-2474-14-14

    Article  Google Scholar 

  32. Torzilli PA, Allen SN (2022) Effect of Articular Surface Compression on Cartilage Extracellular Matrix Deformation. J Biomech Eng 144(9). https://doi.org/10.1115/1.4054108

  33. Chen Z, Zhao C, Liu P et al (2021) Anti-Apoptosis and Autophagy Effects of Melatonin Protect Rat Chondrocytes against Oxidative Stress via Regulation of AMPK/Foxo3 Pathways. Cartilage 13(2suppl):1041s–1053s. https://doi.org/10.1177/19476035211038748

    Article  CAS  Google Scholar 

  34. Hao R, Li M, Li F et al (2022) Protective effects of the phenolic compounds from mung bean hull against H(2)O(2)-induced skin aging through alleviating oxidative injury and autophagy in HaCaT cells and HSF cells. Sci Total Environ 841:156669. https://doi.org/10.1016/j.scitotenv.2022.156669

    Article  CAS  Google Scholar 

  35. Rodrigues TA, Freire AO, Bonfim BF et al (2018) Strontium ranelate as a possible disease-modifying osteoarthritis drug: a systematic review. Braz J Med Biol Res 51(8):e7440. https://doi.org/10.1590/1414-431x20187440

    Article  CAS  Google Scholar 

  36. Guo S, Yu D, Xiao X et al (2020) A vessel subtype beneficial for osteogenesis enhanced by strontium-doped sodium titanate nanorods by modulating macrophage polarization. J Mater Chem B 8(28):6048–6058. https://doi.org/10.1039/d0tb00282h

    Article  CAS  Google Scholar 

  37. Okita N, Honda Y, Kishimoto N et al (2015) Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells. Tissue Eng Part A 21(9–10):1695–1704. https://doi.org/10.1089/ten.TEA.2014.0282

    Article  CAS  Google Scholar 

  38. Cheng Y, Huang L, Wang Y et al (2019) Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3–E1 cells. Int J Mol Med 44(2):652–660. https://doi.org/10.3892/ijmm.2019.4216

    Article  CAS  Google Scholar 

  39. Cai Z, Li Y, Song W et al (2021) Anti-Inflammatory and Prochondrogenic In Situ-Formed Injectable Hydrogel Crosslinked by Strontium-Doped Bioglass for Cartilage Regeneration. ACS Appl Mater Interfaces 13(50):59772–59786. https://doi.org/10.1021/acsami.1c20565

    Article  CAS  Google Scholar 

  40. Li Y, Chen M, Yan J et al (2021) Tannic acid/Sr(2+)-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritis. Acta Biomater 126:119–131. https://doi.org/10.1016/j.actbio.2021.02.046

    Article  CAS  Google Scholar 

  41. Liu S, Cao C, Zhang Y et al (2019) PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis. J Orthop Surg Res 14(1):425. https://doi.org/10.1186/s13018-019-1394-4

    Article  Google Scholar 

  42. Li T, He H, Yang Z et al (2021) Strontium-doped gelatin scaffolds promote M2 macrophage switch and angiogenesis through modulating the polarization of neutrophils. Biomater Sci 9(8):2931–2946. https://doi.org/10.1039/d0bm02126a

    Article  CAS  Google Scholar 

  43. Chen J, Long F (2015) mTORC1 Signaling Promotes Osteoblast Differentiation from Preosteoblasts. PLoS ONE 10(6):e0130627. https://doi.org/10.1371/journal.pone.0130627

    Article  CAS  Google Scholar 

  44. Zhang J, Huang L, Shi X et al (2020) Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging 12(23):24270–24287. https://doi.org/10.18632/aging.202143

    Article  CAS  Google Scholar 

  45. Yan R, Li J, Wu Q et al (2022) Trace Element-Augmented Titanium Implant With Targeted Angiogenesis and Enhanced Osseointegration in Osteoporotic Rats. Front Chem 10:839062. https://doi.org/10.3389/fchem.2022.839062

    Article  CAS  Google Scholar 

  46. Salamanna F, Giavaresi G, Parrilli A et al (2019) Antiresorptive properties of strontium substituted and alendronate functionalized hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model. Mater Sci Eng C Mater Biol Appl 95:355–362. https://doi.org/10.1016/j.msec.2017.11.016

    Article  CAS  Google Scholar 

  47. Bonnevier J, Malmqvist U, Sonntag D et al (2002) Sustained norepinephrine contraction in the rat portal vein is lost when Ca(2+) is replaced with Sr(2+). Am J Physiol Cell Physiol 282(4):C845–852. https://doi.org/10.1152/ajpcell.00191.2001

    Article  CAS  Google Scholar 

  48. Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588. https://doi.org/10.1016/j.bone.2004.04.026

    Article  CAS  Google Scholar 

  49. Borciani G, Ciapetti G, Vitale-Brovarone C et al (2022) Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. Mater (Basel) 15(5). https://doi.org/10.3390/ma15051724

Download references

Acknowledgements

This study was supported by the Military Medical Innovation Engineering Project (no.17cxz004). The funder had no role in study design, data collection, data analysis, interpretation, or writing the report.

Author information

Authors and Affiliations

Authors

Contributions

Liao and Shangguan designed the study; Binghui Liao, Ming Ding, Yingchun Wang, and Hu Xu performed the experiments; Binghui Liao and Hu Xu analyzed the data; and Binghui Liao and Lei Shangguan wrote the paper. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Lei Shangguan.

Ethics declarations

Disclosures

All authors state that they have no conflict of interest and nothing to disclose.

Ethical approval

This study was not a clinical trial, and did not involve human participants. All animal experimental procedures were approved by the Animal Research Committee of the Air Force Military Medical University, People’s Republic of China.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, B., Ding, M., Wang, Y. et al. Strontium ion attenuates osteoarthritis through inhibiting senescence and enhancing autophagy in fibroblast-like synoviocytes. Mol Biol Rep 50, 1437–1446 (2023). https://doi.org/10.1007/s11033-022-08112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08112-7

Keywords

Navigation