Skip to main content

Advertisement

Log in

TAT-Beclin 1 represses the carcinogenesis of DUSP4-positive PTC by enhancing autophagy

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

DUSP4 is a pro-tumorigenic molecule of papillary thyroid carcinoma (PTC). DUSP4 also exists as an autophagic regulator. Moreover, DUSP4, as a negative regulator of MAPK, can prevent Beclin 1 from participating in autophagic response. This study aimed to explore whether TAT-Beclin 1, a recombinant protein of Beclin 1, could inhibit the tumorigenesis of DUSP4-positive PTC by regulating autophagy.

Methods

First, we divided PTC tissues into three groups according to DUSP4 expression levels by immunohistochemical analyses, and evaluated the relationship between autophagic molecules (Beclin 1 and LC3II) and DUSP4 using Western blotting assays. After overexpression of DUSP4 by lentiviral transduction, the in vitro and in vivo roles of TAT-Beclin 1 on DUSP4-overexpressed PTC cells were assessed (including autophagic activity, cell survival and function, and tumor growth). The roles of TAT-Beclin 1 in the survival of DUSP4-silenced PTC cells were also evaluated.

Results

Our results showed that the expression levels of autophagic proteins decreased with the increase of DUSP4 expression in PTC tissues. In PTC cells, DUSP4 overexpression-inhibited autophagic activity (including Beclin 1 expression, LC3 conversion rate and LC3-puncta formation) and -promoted cell proliferation and migration were reversed by TAT-Beclin 1 administration. In vivo assays also showed that DUSP4-overexpressed PTC cells had stronger tumorigenic ability and weaker autophagic activity, which was blocked by TAT-Beclin 1 administration.

Conclusion

TAT-Beclin 1, as an autophagic promoter, could repress the carcinogenesis of DUSP4-positive PTC, which implies that the use of TAT-Beclin 1 for the PTC patients' treatment might be determined according to the DUSP4 level in their tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ertek S, Yılmaz NC, Cicero AF, Vurupalmaz Ö, Demiröz AS, Erdoğan G (2012) Increasing diagnosis of thyroid papillary carcinoma follicular variant in south-east Anatolian region: comparison of characteristics of classical papillary and follicular variant thyroid cancers. Endocr Pathol 23(3):157–160

    Article  CAS  Google Scholar 

  2. Balko JM, Schwarz LJ, Bhola NE, Kurupi R, Owens P, Miller TW, Gómez H, Cook RS, Arteaga CL (2013) Activation of MAPK pathways due to DUSP4 loss promotes cancer stem cell-like phenotypes in basal-like breast cancer. Cancer Res 73(20):6346–6358

    Article  CAS  Google Scholar 

  3. Hijiya N, Tsukamoto Y, Nakada C, Tung Nguyen L, Kai T, Matsuura K, Shibata K, Inomata M, Uchida T, Tokunaga A et al (2016) Genomic loss of DUSP4 contributes to the progression of intraepithelial neoplasm of pancreas to invasive carcinoma. Cancer Res 76(9):2612–2625

    Article  CAS  Google Scholar 

  4. Schmid CA, Robinson MD, Scheifinger NA, Müller S, Cogliatti S, Tzankov A, Müller A (2015) DUSP4 deficiency caused by promoter hypermethylation drives JNK signaling and tumor cell survival in diffuse large B cell lymphoma. J Exp Med 212(5):775–792

    Article  CAS  Google Scholar 

  5. Xu X, Gao F, Wang J, Tao L, Ye J, Ding L, Ji W, Chen X (2018) MiR-122-5p inhibits cell migration and invasion in gastric cancer by down-regulating DUSP4. Cancer Biol Ther 19(5):427–435

    Article  CAS  Google Scholar 

  6. Gröschl B, Bettstetter M, Giedl C, Woenckhaus M, Edmonston T, Hofstädter F, Dietmaier W (2013) Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int J Cancer 132(7):1537–1546

    Article  Google Scholar 

  7. Ma B, Shi R, Yang S, Zhou L, Qu N, Liao T, Wang Y, Wang Y, Ji Q (2016) DUSP4/MKP2 overexpression is associated with BRAF(V600E) mutation and aggressive behavior of papillary thyroid cancer. Onco Targets Ther 9:2255–2263

    CAS  Google Scholar 

  8. Abraham MC, Shaham S (2014) Death without easpases, caspases without death. Trends Cell Biol 14(4):184–193

    Article  Google Scholar 

  9. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676

    Article  CAS  Google Scholar 

  10. Kim TW, Lee SY, Kim M, Cheon C, Ko SG (2018) Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis 9(9):875

    Article  Google Scholar 

  11. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, Ma Y, Mao Z, Song H, Chen F (2019) β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis 10(4):255

    Article  CAS  Google Scholar 

  12. Choi JC, Wu W, Muchir A, Iwata S, Homma S, Worman HJ (2012) Dual specificity phosphatase 4 mediates cardiomyopathy caused by lamin A/C (LMNA) gene mutation. J Biol Chem 287:40513–40524

    Article  CAS  Google Scholar 

  13. Han W, Fu X, Xie J, Meng Z, Gu Y, Wang X, Li L, Pan H, Huang W (2015) MiR-26a enhances autophagy to protect against ethanol-induced acute liver injury. J Mol Med (Berl) 93(9):1045–1055

    Article  CAS  Google Scholar 

  14. Barajas-Espinosa A, Basye A, Angelos MG, Chen CA (2015) Modulation of p38 kinase by DUSP4 is important in regulating cardiovascular function under oxidative stress. Free Radic Biol Med 89:170–181

    Article  CAS  Google Scholar 

  15. Kim SY, Han YM, Oh M, Kim WK, Oh KJ, Lee SC, Bae KH, Han BS (2015) DUSP4 regulates neuronal differentiation and calcium homeostasis by modulating ERK1/2 phosphorylation. Stem Cells Dev 24(6):686–700

    Article  CAS  Google Scholar 

  16. Denhez B, Rousseau M, Dancosst DA, Lizotte F, Guay A, Auger-Messier M, Côté AM, Geraldes P (2019) Diabetes-induced DUSP4 reduction Promotes podocyte dysfunction and progression of diabetic nephropathy. Diabetes 68(5):1026–1039

    Article  CAS  Google Scholar 

  17. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30(6):678–688

    Article  CAS  Google Scholar 

  18. Pattingre S, Bauvy C, Levade T, Levine B, Codogno P (2009) Ceramide-induced autophagy: to junk or to protect cells? Autophagy 5(4):558–560

    Article  CAS  Google Scholar 

  19. Ni Z, Wang B, Dai X, Ding W, Yang T, Li X, Lewin S, Xu L, Lian J, He F (2014) HCC cells with high levels of Bcl-2 are resistant to ABT-737 via activation of the ROS-JNK-autophagy pathway. Free Radic Biol Med 70:194–203

    Article  CAS  Google Scholar 

  20. Liu YW, Yang T, Zhao L, Ni Z, Yang N, He F, Dai SS (2016) Activation of Adenosine 2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome. Sci Rep 6:33614

    Article  CAS  Google Scholar 

  21. Nazim UM, Yin H, Park SY (2020) Neferine treatment enhances the TRAIL-induced apoptosis of human prostate cancer cells via autophagic flux and the JNK pathway. Int J Oncol 56(5):1152–1161

    CAS  Google Scholar 

  22. Liu S, Lin H, Wang D, Li Q, Luo H, Li G, Chen X, Li Y, Chen P, Zhai B et al (2019) PCDH17 increases the sensitivity of colorectal cancer to 5-fluorouracil treatment by inducing apoptosis and autophagic cell death. Signal Transduct Target Ther 4:53

    Article  CAS  Google Scholar 

  23. Zhou N, Wei Z, Qi Z, Chen L (2021) Abscisic acid-induced autophagy selectively via MAPK/JNK signalling pathway in glioblastoma. Cell Mol Neurobiol 41(4):813–826

    Article  CAS  Google Scholar 

  24. Qin X, Lu A, Ke M, Zhu W, Ye X, Wang G, Weng G (2020) DJ-1 inhibits autophagy activity of prostate cancer cells by repressing JNK-Bcl2-Beclin 1 signaling. Cell Biol Int 44(4):937–946

    Article  CAS  Google Scholar 

  25. Park KJ, Lee SH, Lee CH, Jang JY, Chung J, Kwon MH, Kim YS (2009) Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun 382(4):726–729

    Article  CAS  Google Scholar 

  26. He H, Du Z, Lin J, Wu W, Yu Y (2021) DUSP4 inhibits autophagic cell death in PTC by inhibiting JNK-BCL2-Beclin 1 signaling. Biochem Cell Biol 23:1–8

    Google Scholar 

  27. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D et al (2013) Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494(7436):201–206

    Article  CAS  Google Scholar 

  28. Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y et al (2018) Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 138(20):2247–2262

    Article  CAS  Google Scholar 

  29. Atwood DJ, Pokhrel D, Brown CN, Holditch SJ, Bachu DM, Thorburn A, Hopp K, Edelstein CL (2020) Increased mTOR and suppressed autophagic flux in the heart of a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Cell Signal 74:109730

    Article  CAS  Google Scholar 

  30. Karakashev S, Zhu H, Wu S, Yokoyama Y, Bitler BG, Park PH, Lee JH, Kossenkov AV, Gaonkar KS, Yan H et al (2018) CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat Commun 9(1):631

    Article  Google Scholar 

  31. Wang X, Qi H, Wang Q, Zhu Y, Wang X, Jin M, Tan Q, Huang Q, Xu W, Li X et al (2015) FGFR3/fibroblast growth factor receptor 3 inhibits autophagy through decreasing the ATG12-ATG5 conjugate, leading to the delay of cartilage development in achondroplasia. Autophagy 11(11):1998–2013

    Article  CAS  Google Scholar 

  32. Thayyullathil F, Cheratta AR, Pallichankandy S, Subburayan K, Tariq S, Rangnekar VM (1867) Galadari S (2020) Par-4 regulates autophagic cell death in human cancer cells via upregulating p53 and BNIP3. Biochim Biophys Acta Mol Cell Res 7:118692

    Google Scholar 

  33. Park JH, Park SA, Lee YJ, Park HW, Oh SM (2020) PBK attenuates paclitaxel-induced autophagic cell death by suppressing p53 in H460 non-small-cell lung cancer cells. FEBS Open Bio 10(5):937–950

    Article  CAS  Google Scholar 

  34. Sinha S, Levine B (2009) The autophagy effector Beclin1: a novel BH3-only protein. Oncogene 27:137–148

    Article  Google Scholar 

  35. Fang Y, Zou L, He W (2021) miR-30a-5p mitigates autophagy by regulating the Beclin-1/ATG16 pathway in renal ischemia/reperfusion injury. Int J Mol Med 48(1):144

    Article  CAS  Google Scholar 

  36. Sun W, Lu H, Dong S, Li R, Chu Y, Wang N, Zhao Y, Zhang Y, Wang L, Sun L et al (2021) Beclin1 controls caspase-4 inflammsome activation and pyroptosis in mouse myocardial reperfusion-induced microvascular injury. Cell Commun Signal 19(1):107

    Article  CAS  Google Scholar 

  37. Ke D, Ji L, Wang Y, Fu X, Chen J, Wang F, Zhao D, Xue Y, Lan X, Hou J (2019) JNK1 regulates RANKL-induced osteoclastogenesis via activation of a novel Bcl-2-Beclin1-autophagy pathway. FASEB J 33(10):11082–11095

    Article  CAS  Google Scholar 

  38. Chen Y, Li N, Yang J, Li K, Tang M, Zhao X, Guo W, Tong A, Nie C, Peng Y, Yuan Z (2022) PUMA overexpression dissociates thioredoxin from ASK1 to activate the JNK/BCL-2/BCL-XL pathway augmenting apoptosis in ovarian cancer. Biochim Biophys Acta Mol Basis Dis 16:166553

    Article  Google Scholar 

  39. Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4(7):949–951

    Article  CAS  Google Scholar 

  40. Ke W, Zhang L, Zhao X, Lu Z (2022) p53 m6A modulation sensitizes hepatocellular carcinoma to apatinib through apoptosis. Apoptosis 27(5–6):426–440

    Article  CAS  Google Scholar 

  41. Meza-Sosa KF, Miao R, Navarro F, Zhang Z, Zhang Y, Hu JJ, Hartford CCR, Li XL, Pedraza-Alva G, Pérez-Martínez L et al (2022) SPARCLE, a p53-induced lncRNA, controls apoptosis after genotoxic stress by promoting PARP-1 cleavage. Mol Cell 82(4):785–802

    Article  CAS  Google Scholar 

  42. Ke D, Yu Y, Li C, Han J, Xu J (2022) Phosphorylation of BCL2 at the Ser70 site mediates RANKL-induced osteoclast precursor autophagy and osteoclastogenesis. Mol Med 28(1):22

    Article  CAS  Google Scholar 

  43. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP et al (2013) Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med 19(11):1478–1488

    Article  CAS  Google Scholar 

  44. Zhang Q, Grunberger JW, Khurana N, Zhou X, Xu X, Ghandehari H, Chen F (2022) BECLIN-1-mediated autophagy suppresses silica nanoparticle-induced testicular toxicity via the inhibition of caspase 8-mediated cell apoptosis in leydig cells. Cells 11(12):1863

    Article  CAS  Google Scholar 

  45. Liu X, Li Q, Sun L, Chen L, Li Y, Huang B, Liu Y, Jiang C (2021) miR-30e-5p regulates autophagy and apoptosis by targeting beclin1 involved in contrast-induced acute kidney injury. Curr Med Chem 28(38):7974–7984

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The Natural Science Foundation of Hebei Province (Grant No. H2018206180).

Author information

Authors and Affiliations

Authors

Contributions

NH and LLZ were responsible for conception and writing of the manuscript. LLZ, YMS and YHT performed the experimental work. All authors contributed to substantial discussion of content, reviewing and revising the manuscript before submission.

Corresponding author

Correspondence to Ning Hu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, L., Song, Y., Tian, Y. et al. TAT-Beclin 1 represses the carcinogenesis of DUSP4-positive PTC by enhancing autophagy. Mol Biol Rep 50, 1425–1436 (2023). https://doi.org/10.1007/s11033-022-08109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08109-2

Keywords

Navigation