Skip to main content
Log in

Cinnamaldehyde affects lipid droplets metabolism after adipogenic differentiation of C2C12 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Based on our previous research conducted on cinnamaldehyde (CA) exhibiting its ability to improve the growth performance of fattening pigs and the adipogenesis induction model of C2C12 cells constructed in our laboratory, we explored the effects of CA on the generation and development of lipid droplets (LDs) in adipogenic differentiated C2C12 cells.

Methods and results

C2C12 cells were treated with either 0.4 mM or 0.8 mM CA. BODIPY staining and triglyceride measurements were conducted to observe the morphology of LDs, and Western blotting was used to measure the expression of their metabolism-related proteins. The results showed that the average number of LDs in the CA treatment groups was more than the control group (P < 0.05), whereas the average LD size and triglyceride content decreased (P < 0.05). Compared with the control group, the expression levels of fusion-related genes in the LDs of the CA treatment group significantly decreased, while decomposition-related genes and autophagy-related genes in the LDs in C2C12 cells significantly increased (P < 0.01).

Conclusion

Cinnamaldehyde promoted the decomposition and autophagy of lipid droplets in C2C12 cells and inhibited the fusion of lipid droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wood JD, Enser M, Fisher AV et al (2008) Fat deposition, fatty acid composition and meat quality: A review. Meat Sci 78:343–358. https://doi.org/10.1016/j.meatsci.2007.07.019

    Article  CAS  PubMed  Google Scholar 

  2. Cao Z, Hao Y, Fung CW et al (2019) Dietary fatty acids promote lipid droplet diversity through seipin enrichment in an ER subdomain. Nat Commun 10:2902. https://doi.org/10.1038/s41467-019-10835-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135. https://doi.org/10.1038/nature07976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saito T, Kuma A, Sugiura Y et al (2019) Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun 10:1567. https://doi.org/10.1038/s41467-019-08829-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lautaoja JH, Pekkala S, Pasternack A et al (2020) Differentiation of Murine C2C12 Myoblasts Strongly Reduces the Effects of Myostatin on Intracellular Signaling. Biomolecules 10:695. https://doi.org/10.3390/biom10050695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ranasinghe P, Pigera S, Premakumara GAS et al (2013) Medicinal properties of “true” cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement Altern Med 13:275. https://doi.org/10.1186/1472-6882-13-275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doyle AA, Stephens JC (2019) A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 139:104405. https://doi.org/10.1016/j.fitote.2019.104405

    Article  CAS  PubMed  Google Scholar 

  8. Luo Q, Li N, Zheng Z et al (2020) Dietary cinnamaldehyde supplementation improves the growth performance, oxidative stability, immune function, and meat quality in finishing pigs. Livest Sci 240:104221. https://doi.org/10.1016/j.livsci.2020.104221

    Article  Google Scholar 

  9. Khare P, Jagtap S, Jain Y et al (2016) Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. BioFactors Oxf Engl 42:201–211. https://doi.org/10.1002/biof.1265

    Article  CAS  Google Scholar 

  10. Neto JGO, Boechat SK, Romão JS et al (2020) Treatment with cinnamaldehyde reduces the visceral adiposity and regulates lipid metabolism, autophagy and endoplasmic reticulum stress in the liver of a rat model of early obesity. J Nutr Biochem 77:108321. https://doi.org/10.1016/j.jnutbio.2019.108321

    Article  CAS  PubMed  Google Scholar 

  11. Liu Z, Jun Y, Zhonghao L, Shuqin Mu Starvation-induced lipid droplet morphological remodeling in lipogenic differentiated C2C12 cells[J].China Veterinary Animal Husbandry,2020, 47(11):3460–3466.(in chinese)

  12. Morales PE, Bucarey JL, Espinosa A (2017) Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. J Diabetes Res 2017:1789395. https://doi.org/10.1155/2017/1789395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang B, Yuan HD, Kim DY et al (2011) Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways. J Agric Food Chem 59:3666–3673. https://doi.org/10.1021/jf104814t

    Article  CAS  PubMed  Google Scholar 

  14. Khare P, Jagtap S, Jain Y et al (2016) Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice: Effects of Cinnamaldehyde Supplementation. BioFactors 42:201–211. https://doi.org/10.1002/biof.1265

    Article  CAS  PubMed  Google Scholar 

  15. Cerk IK, Wechselberger L, Oberer M (2018) Adipose Triglyceride Lipase Regulation: An Overview. Curr Protein Pept Sci 19:221–233. https://doi.org/10.2174/1389203718666170918160110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee IH, Cao L, Mostoslavsky R et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105:3374–3379. https://doi.org/10.1073/pnas.0712145105

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sathyanarayan A, Mashek MT, Mashek DG (2017) ATGL Promotes Autophagy/Lipophagy via SIRT1 to Control Hepatic Lipid Droplet Catabolism. Cell Rep 19:1–9. https://doi.org/10.1016/j.celrep.2017.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao G, Chen F-J, Zhou L et al (2017) Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta BBA - Mol Cell Biol Lipids 1862:1197–1204. https://doi.org/10.1016/j.bbalip.2017.06.009

    Article  CAS  Google Scholar 

  19. Zhou R, Yi L, Ye X et al (2018) Resveratrol Ameliorates Lipid Droplet Accumulation in Liver Through a SIRT1/ ATF6-Dependent Mechanism. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 51:2397–2420. https://doi.org/10.1159/000495898

    Article  CAS  Google Scholar 

  20. Hjelholt AJ, Lee KY, Arlien-Søborg MC et al (2019) Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial. Mol Metab 29:65–75. https://doi.org/10.1016/j.molmet.2019.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng G, Huang E, Ruan J et al (2019) Effects of a high energy and low protein diet on hepatic and plasma characteristics and Cidea and Cidec mRNA expression in liver and adipose tissue of laying hens with fatty liver hemorrhagic syndrome. Anim Sci J Nihon Chikusan Gakkaiho 90:247–254. https://doi.org/10.1111/asj.13140

    Article  CAS  PubMed  Google Scholar 

  22. Yang L, Ding Y, Chen Y et al (2012) The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lipid Res 53:1245–1253. https://doi.org/10.1194/jlr.R024117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen F, Yin Y, Chua BT, Li P (2020) CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic 21:94–105. https://doi.org/10.1111/tra.12717

    Article  CAS  PubMed  Google Scholar 

  24. Ha HJ, Park HH (2018) Crystal structure and mutation analysis revealed that DREP2 CIDE forms a filament-like structure with features differing from those of DREP4 CIDE. Sci Rep 8:17810. https://doi.org/10.1038/s41598-018-36253-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lizaso A, Tan K-T, Lee Y-H (2013) β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9:1228–1243. https://doi.org/10.4161/auto.24893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun Z, Gong J, Wu H et al (2013) Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4:1594. https://doi.org/10.1038/ncomms2581

    Article  CAS  PubMed  Google Scholar 

  27. Grahn THM, Zhang Y, Lee M-J et al (2013) FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Biochem Biophys Res Commun 432:296–301. https://doi.org/10.1016/j.bbrc.2013.01.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu L, Zhou L, Li P (2012) CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol 32:1094–1098. https://doi.org/10.1161/ATVBAHA.111.241489

    Article  CAS  PubMed  Google Scholar 

  29. Gong J, Sun Z, Wu L et al (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195:953–963. https://doi.org/10.1083/jcb.201104142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Tianjin under Grant [18JCQNJC15100], the Tianjin Science and Technology Plan Project under Grant [19ZXZYSN00120, 22ZYCGSN00130], The Pig Industry Technology System Innovation Team in Tianjin under Grant [ITTPRS2021005], the Financial Seed Industry Innovation Research Project of Tianjin Academy of Agricultural Sciences [2022ZYCX009], Gansu Livelihood Science and Technology Project [20210306NCC0180], and the grants from State Key Laboratory of Animal Nutrition of China.

Author information

Authors and Affiliations

Authors

Contributions

Y. L., Q. L., Z. L and. X. Z performed the experiment and prepared the draft article; Z. S. and N. L. analyzed data; S. M., Z. Z., and H. Z. provided guidance for the study, J. Y. and C. S. designed the experiment, and acquired funding. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Jun Yan or Chao Sun.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Z., Luo, Q. et al. Cinnamaldehyde affects lipid droplets metabolism after adipogenic differentiation of C2C12 cells. Mol Biol Rep 50, 2033–2039 (2023). https://doi.org/10.1007/s11033-022-08101-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08101-w

Keywords

Navigation