Skip to main content
Log in

Genome-wide identification and expression analysis of metal tolerance protein (MTP) gene family in soybean (Glycine max) under heavy metal stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aim

Plant metal tolerance proteins (MTPs) are plant membrane divalent cation transporters that specifically contribute to heavy metal stress resistance and mineral uptake. However, little is known about this family’s molecular behaviors and biological activities in soybean.

Methods and results

A total of 20 potential MTP candidate genes were identified and studied in the soybean genome for phylogenetic relationships, chromosomal distributions, gene structures, gene ontology, cis-elements, and previous gene expression. Furthermore, the expression of MTPs has been investigated under different heavy metals treatments. All identified soybean MTPs (GmaMTPs) contain a cation efflux domain or a ZT dimer and are further divided into three primary cation diffusion facilitator (CDF) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. The developmental analysis reveals that segmental duplication contributes to the GmaMTP family’s expansion. Tissue-specific expression profiling revealed comparative expression profiling in similar groups, although gene expression differed between groups. GmaMTP genes displayed biased responses in either plant leaves or roots when treated with heavy metal. In the leaves and roots, nine and ten GmaMTPs responded to at least one metal ion treatment. Furthermore, in most heavy metal treatments, GmaMTP1.1, GmaMTP1.2, GmaMTP3.1, GmaMTP3.2, GmaMTP4.1, and GmaMTP4.3 exhibited significant expression responses.

Conclusion

Our findings provided insight into the evolution of MTPs in soybean. Overall, our findings shed light on the evolution of the MTP gene family in soybean and pave the path for further functional characterization of this gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Provided as supplementary material.

References

  1. Thomine S, Vert G (2013) Iron transport in plants: better be safe than sorry. Curr Opin Plant Biol 16:322–327

    Article  CAS  PubMed  Google Scholar 

  2. Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T (2015) Cation diffusion facilitator family: structure and function. FEBS Lett 589:1283–1295

    Article  CAS  PubMed  Google Scholar 

  3. El-Sappah AH, Rather SA (2022) Genomics Approaches to Study Abiotic Stress Tolerance in Plants. Plant Abiotic Stress Physiology: Volume 2: Molecular Advancements 25

  4. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  5. El-Sappah AHAM (2013) Utilization of micronucleus test and genetic markers for determining the pollution of Nile Tilapia (Oreochromis niloticus). Zagazig University

    Google Scholar 

  6. Ali I, Asim M, Khan TA (2013) Arsenite removal from water by electro-coagulation on zinc–zinc and copper–copper electrodes. Int J Environ Sci Technol 10:377–384

    Article  CAS  Google Scholar 

  7. Liu J, Gao Y, Tang Y, Wang D, Chen X, Yao Y, Guo Y (2019) Genome-wide identification, comprehensive gene feature, evolution, and expression analysis of plant metal tolerance proteins in tobacco under heavy metal toxicity. Front Genet 10:345

    Article  PubMed  PubMed Central  Google Scholar 

  8. El-Sappah AH, Elrys AS, Desoky E-SM, Zhao X, Bingwen W, El-Sappah HH, Zhu Y, Zhou W, Zhao X, Li J (2021) Comprehensive genome wide identification and expression analysis of MTP gene family in tomato (Solanum lycopersicum) under multiple heavy metal stress. Saudi J Biol Sci 28:6946–6956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51

    Article  Google Scholar 

  10. El-Sappah AH, Seif MM, Abdel-Kader HH, Soaud SA, Elhamid MAA, Abdelghaffar AM, El-Sappah HH, Sarwar H, Yadav V, Maitra P, Zhao X, Yan K, Li J, Abbas M (2022) Genotoxicity and trace elements contents analysis in Nile Tilapia (Oreochromis niloticus) indicated the levels of aquatic contamination at three Egyptian areas. Front. Vet. Sci 9:818866

    Article  PubMed  PubMed Central  Google Scholar 

  11. Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:1–16

    Article  Google Scholar 

  12. Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11:1–13

    Article  Google Scholar 

  13. van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1056

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shirazi Z, Abedi A, Kordrostami M, Burritt DJ, Hossain MA (2019) Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape (Vitis vinifera L). 3 Biotech 9:1–17

    Article  Google Scholar 

  15. Gao Y, Yang F, Liu J, Xie W, Zhang L, Chen Z, Peng Z, Ou Y, Yao Y (2020) Genome-wide identification of metal tolerance protein genes in Populus trichocarpa and their roles in response to various heavy metal stresses. Int J Mol Sci 21:1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vatansever R, Filiz E, Eroglu S (2017) Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification. Biometals 30:217–235

    Article  CAS  PubMed  Google Scholar 

  17. El-Sappah AH, Elbaiomy RG, Elrys AS, Wang Y, Zhu Y, Huang Q, Yan K, Xianming Z, Abbas M, El-Tarabily KA (2021) Genome-wide identification and expression analysis of metal tolerance protein gene family in Medicago truncatula under a broad range of heavy metal stress. Front Genet. https://doi.org/10.3389/fgene.2021.713224

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Li Q, Xu W, Zhao H, Guo F, Wang P, Wang Y, Ni D, Wang M, Wei C (2020) Identification of MTP gene family in tea plant (Camellia sinensis L) and characterization of CsMTP8: 2 in manganese toxicity. Ecotoxicol Environ Saf 202:110904

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Wu Y, Li B, He W, Yang Y, Yang Y (2018) Genome-wide identification and expression analysis of the cation diffusion facilitator gene family in turnip under diverse metal ion stresses. Front Genet 9:103

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fu X-Z, Tong Y-H, Zhou X, Ling L-L, Chun C-P, Cao L, Zeng M, Peng L-Z (2017) Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity. Gene 629:1–8

    Article  CAS  PubMed  Google Scholar 

  21. Hou L, Gu D, Li Y, Li J, Li J, Chen X, Zhang W (2019) Phylogenetic and expression analysis of Mn-CDF transporters in pear (Pyrus bretschneideri Rehd.). Plant Mol Biol Report 37:98–110

    Article  CAS  Google Scholar 

  22. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51:198–210

    Article  CAS  PubMed  Google Scholar 

  23. Dhankhar R, Sainger PA, Sainger M (2012) Phytoextraction of zinc: physiological and molecular mechanism. Soil Sediment Contamin Int J 21:115–133

    Article  CAS  Google Scholar 

  24. Fujiwara T, Kawachi M, Sato Y, Mori H, Kutsuna N, Hasezawa S, Maeshima M (2015) A high molecular mass zinc transporter MTP 12 forms a functional heteromeric complex with MTP 5 in the Golgi in Arabidopsis thaliana. FEBS J 282:1965–1979

    Article  CAS  PubMed  Google Scholar 

  25. Eroglu S, Meier B, von Wirén N, Peiter E (2016) The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in Arabidopsis. Plant Physiol 170:1030–1045

    Article  CAS  PubMed  Google Scholar 

  26. Chu H-H, Car S, Socha AL, Hindt MN, Punshon T, Guerinot ML (2017) The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds. Sci Rep 7:1–10

    Article  Google Scholar 

  27. Pedas P, Schiller Stokholm M, Hegelund JN, Ladegård AH, Schjoerring JK, Husted S (2014) Golgi localized barley MTP8 proteins facilitate Mn transport. PLoS ONE 9:e113759

    Article  PubMed  PubMed Central  Google Scholar 

  28. Takemoto Y, Tsunemitsu Y, Fujii-Kashino M, Mitani-Ueno N, Yamaji N, Ma JF, Kato S-I, Iwasaki K, Ueno D (2017) The tonoplast-localized transporter MTP8. 2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant Cell Physiol 58:1573–1582

    Article  CAS  PubMed  Google Scholar 

  29. Tsunemitsu Y, Yamaji N, Ma JF, Kato S-I, Iwasaki K, Ueno D (2018) Rice reduces Mn uptake in response to Mn stress. Plant Signal Behav 13:e1422466

    Article  PubMed  PubMed Central  Google Scholar 

  30. Migocka M, Papierniak A, Maciaszczyk-Dziubińska E, Poździk P, Posyniak E, Garbiec A, Filleur S (2014) Retracted: cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. Oxford University Press

    Google Scholar 

  31. Schlueter JA, Lin J-Y, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O’Bleness M, Roe BA, Nelson RT, Scheffler BE (2007) Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genom 8:1–16

    Article  Google Scholar 

  32. Edwards K, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans A, Bombarely A, Allen F, Hurst R, White B, Kernodle S (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18:1–14

    Article  Google Scholar 

  33. Price CA, Reardon EM (2001) Mendel, a database of nomenclature for sequenced plant genes. Nucleic Acids Res 29:118–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li J, Zhang L, Yuan Y, Wang Q, Elbaiomy R, Zhou W, Wu H, Soaud S, Abbas M, Chen B, Zhao Dand El-Sappah AH (2021) In silico functional prediction and expression analysis of C2H2 zinc-finger family transcription factor revealed regulatory role of ZmZFP126 in maize growth. Front Genet. https://doi.org/10.3389/fgene.2021.770427

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li J, Zhang LRGE, Chen L, Wang Z, Jiao J, Zhu J, Zhou W, Chen B, Soaud SA, Abbas M, Lin N, El-Sappah AH (2022) Evolution analysis of FRIZZY PANICLE (FZP) orthologs explored the mutations in DNA coding sequences in the grass family (Poaceae). PeerJ 10:e12880

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Islam M, Qi S, Zhang S, Amin B, Yadav V, El-Sappah AH, Zhang F, Liang Y (2022) Genome-Wide Identification and Functions against Tomato Spotted Wilt Tospovirus of PR-10 in Solanum lycopersicum. Int J Mol Sci 23:1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  CAS  PubMed  Google Scholar 

  41. Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123

    Article  PubMed  PubMed Central  Google Scholar 

  42. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  44. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelley L, Mezulis S, Yates C, Wass M, Sternberg M (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols 10:845–858

    Article  CAS  PubMed  Google Scholar 

  48. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008:1–12

    Article  Google Scholar 

  49. Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:W147–W153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. El-Sappah AH, Shawky A, Sayed-Ahmad MS, Youssef M (2017) Estimation of heat shock protein 70 (hsp 70) gene expression in nile tilapia (Oreochromis niloticus) using quantitative Real-Time PCR. Zagazig J Agric Res 44:1003–1015

    Article  Google Scholar 

  51. Abbas M, Peszlen I, Shi R, Kim H, Katahira R, Kafle K, Xiang Z, Huang X, Min D, Mohamadamin M (2020) Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood. Tree Physiol 40:73–89

    Article  CAS  PubMed  Google Scholar 

  52. Liu J, Shi M, Wang J, Zhang B, Li Y, Wang J, El-Sappah A, Liang Y (2020) Comparative transcriptomic analysis of the development of sepal morphology in tomato (Solanum Lycopersicum L). Int J Mol Sci 21:5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  54. El-Sappah A, Shawky A, Sayed-Ahmad M, Youssef M (2012) Nile tilapia as bio indicator to estimate the contamination of water using SDS-PAGE and RAPDPCR techniques. Egypt J Genet Cytol 41:209–227

    Article  Google Scholar 

  55. Chidambaram R (2015) Isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology for effective removal of Cr (VI) using fungal biomass. PLoS ONE 10:e0116884

    Article  PubMed  PubMed Central  Google Scholar 

  56. Elrys AS, Merwad A-R, Abdo AI, Abdel-Fatah MK, Desoky E-SM (2018) Does the application of silicon and Moringa seed extract reduce heavy metals toxicity in potato tubers treated with phosphate fertilizers? Environ Sci Pollut Res 25:16776–16787

    Article  CAS  Google Scholar 

  57. Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144

    Article  PubMed  PubMed Central  Google Scholar 

  58. Samuel MS, Datta S, Khandge RS, Selvarajan E (2021) A state of the art review on characterization of heavy metal binding metallothioneins proteins and their widespread applications. Sci Total Environ 775:145829

    Article  CAS  Google Scholar 

  59. Ober D (2005) Seeing double: gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10:444–449

    Article  CAS  PubMed  Google Scholar 

  60. Liu J, Pang X, Cheng Y, Yin Y, Zhang Q, Su W, Hu B, Guo Q, Ha S, Zhang J (2018) The Hsp70 gene family in Solanum tuberosum: genome-wide identification, phylogeny, and expression patterns. Sci Rep 8:1–11

    Google Scholar 

  61. Abbas M, Li Y, Elbaiomy RG, Yan K, Ragauskas AJ, Yadav V, Soaud SA, Islam MM, Saleem N, Noor Z, Zafar S, Hussain SS, Abbas M, Abbas S, Li J, El-Sappah AH (2022) Genome-wide analysis and expression profiling of SlHsp70 gene family in solanum lycopersicum revealed higher expression of SlHsp70-11 in roots under Cd(2+) stress. Front Biosci (Landmark edition) 27:186

    Article  CAS  Google Scholar 

  62. Harrow J, Denoeud F, Frankish A, Reymond A, Chen C-K, Chrast J, Lagarde J, Gilbert JG, Storey R, Swarbreck D (2006) GENCODE: producing a reference annotation for ENCODE. Genome Biol 7:1–9

    Article  Google Scholar 

  63. Büyükköroğlu G, Dora DD, Özdemir F, Hızel C (2018) Techniques for protein analysis. In Omics technologies and bio-engineering. Elsevier, pp 317-351.

  64. Mani A, Sankaranarayanan K (2018) Heavy metal and mineral element-induced abiotic stress in rice plant. Rice Crop Curr Dev. https://doi.org/10.5772/intechopen.76080

    Article  Google Scholar 

  65. Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S (2019) Exploring the protein–protein interaction landscape in plants. Plant, Cell Environ 42:387–409

    Article  CAS  PubMed  Google Scholar 

  66. Consortium GO (2010) The gene ontology in 2010: extensions and refinements. Nucleic Acids Res 38:D331–D335

    Article  Google Scholar 

  67. Purwantini E, Torto-Alalibo T, Lomax J, Setubal JC, Tyler BM, Mukhopadhyay B (2014) Genetic resources for methane production from biomass described with the GENE Ontology. Front Microbiol 5:634

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zambounis A, Ganopoulos I, Valasiadis D, Karapetsi L, Madesis P (2020) RNA sequencing-based transcriptome analysis of kiwifruit infected by Botrytis cinerea. Physiol Mol Plant Pathol 111:101514

    Article  CAS  Google Scholar 

  69. Qian W, Liao B-Y, Chang AY-F, Zhang J (2010) Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet 26:425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439

    Article  PubMed  Google Scholar 

  71. Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–1758

    Article  CAS  PubMed  Google Scholar 

  72. Migocka M, Kosieradzka A, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Garbiec A, Filleur S (2015) Retracted: two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. Oxford University Press

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to and acknowledge the Sichuan Province Government for providing such a well-equipped platform for conducting research, the management of Yibin University for their support and for providing us with a pleasant environment for research, and the Chinese Government and the Chinese public in general for their love of Science and Research. We thank Yibin University’s High-level Talent Project for its assistance during the experimental investigation.

Funding

We would like to thank the Sichuan Provincial Government, as well as Yibin University's High-level Talent Project (No.2018RC07), for their assistance throughout the experimental investigation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AHES, MA, HQ and JL. Formal analysis: AHES, JL, SHW and HQ. Writing an original draft: AHES. Methodology: AHES, ASE, ZN and NS. Writing, review and editing; AHES, MA, SAR, SHW, MB and JL. Investigation: AHES, HQ and RRM.

Corresponding author

Correspondence to Jia Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest and nothing to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ahmed H. El-Sappah, Manzar Abbas, Shabir A. Rather and Huang Qiulan share the first authorship. Shabir A. Rather

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sappah, A.H., Abbas, M., Rather, S.A. et al. Genome-wide identification and expression analysis of metal tolerance protein (MTP) gene family in soybean (Glycine max) under heavy metal stress. Mol Biol Rep 50, 2975–2990 (2023). https://doi.org/10.1007/s11033-022-08100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08100-x

Keywords

Navigation