Skip to main content
Log in

Candidate gene based SSR and SNP markers for gynoecy in bitter gourd (Momordica charantia L.)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Even though the bitter gourd hybrids are shown to have significant heterosis for many of the economic traits, processes such as manual bagging and hand pollination make the hybrid seed production labour-intensive. Use of gynoecious line as female parent makes hybrid seed production more economical. This work was performed with the objective to identify the candidate gene based molecular markers for gynoecy in bitter gourd.

Methods and results

Seven putative genes for flowering and sex expression, isolated from the monoecious (MC-136) and gynoecious (KAU-MCGy-101) bitter gourd accessions, were sequence characterized. MADS-box transcription factor genes AG6 and McAG2 had nucleotide polymorphisms at five sites each and were potential candidates for marker development. An In/Del polymorphism of 48 bp ([TC]24) in AG6 gene was used to develop an SSR marker and a transition mutation of [A/G] in this gene was used to develop a set of SNP markers. These markers have developed distinct polymorphism between the monoecious and gynoecious genotypes and were found suited for the marker assisted selection.

Conclusions

MADS box transcription factor genes AG6 and McAG2 are identified as candidates for sex expression in bitter gourd. Based on the InDels and transition in the intronic region of AG6, SSR marker BGAG6 and an SNP marker set segregating with the sex forms were developed. The markers have been validated using four other monoecious lines and are routinely used in our bitter gourd hybrid seed production programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated in this study are available from the corresponding author upon reasonable request.

References

  1. Robinson RW, Decker-Walters DS (1999) Cucurbits, CAB International, Wallingford, Oxford, UK, ISBN: 9780851991337, p 226

  2. Schaefer H, Renner SS (2010) A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Mol Phylogenet Evol 54:553–560. https://doi.org/10.1016/j.ympev.2009.08.006

    Article  CAS  Google Scholar 

  3. Ramesh GA, Mathew D, John KJ, Ravisankar V (2022) Chloroplast gene matK holds the barcodes for identification of Momordica (Cucurbitaceae) species from Indian subcontinent. Hortic Plant J 8:89–98. https://doi.org/10.1016/j.hpj.2021.04.001

    Article  CAS  Google Scholar 

  4. Palada MC, Chang LC (2003) Suggested cultural practices for bitter gourd. International Cooperators’ Guide, Asian Vegetable Research and Development Center (AVRDC), Taiwan, Publication 03-547, 5 p

  5. Ram D, Kumar S, Banerjee MK, Kalloo G (2002) Occurrence, identification and preliminary characterization of gynoecism in bitter gourd (Momordica charantia). Indian J Agric Sci 72:348–349

    Google Scholar 

  6. Behera TK, Dey SS, Sirohi PS (2006) DBGy-201 and DBGy-202: two gynoecious lines in bitter gourd (Momordica charantia L.) isolated from indigenous source. Indian J Genet 66:61–62

    Google Scholar 

  7. Iwamoto E, Ishida T (2006) Development of gynoecious inbred line in balsam pear (Momordica charantia L.). Hortic Res 5:101–104. https://doi.org/10.2503/hrj.5.101

    Article  Google Scholar 

  8. Mishra S, Behera TK, Munshi AD, Bharadwaj C, Rao AR (2015) Inheritance of gynoecism and genetics of yield and yield contributing traits through generation mean analysis in bitter gourd. Indian J Hortic 72:218–222

    Article  Google Scholar 

  9. Dey SS, Behera TK, Munshi AD, Pal A (2010) Gynoecious inbred with better combining ability improves yield and earliness in bitter gourd (Momordica charantia L.). Euphytica 173:37–47. https://doi.org/10.1007/s10681-009-0097-z

    Article  Google Scholar 

  10. Dey SS, Behera TK, Munshi AD, Pal A, Rakshit S (2008) Gynoecy in bitter melon (Momordica charantia) for exploiting hybrid vigour. In: Cucurbitaceae 2008, Proc IX EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, Avignon, France, 21–24 May 2008, pp 539–542

  11. Saha K, Bhoi S, Mishra PKS (2018) Molecular breeding for gynoecy trait in bitter gourd (Momordica charantia L.). J Pharmacogn Phytochem 7(5):86–89

    CAS  Google Scholar 

  12. Khan S, Behera TK (2011) Performance of gynoecious× monoecious hybrids of bitter gourd (Momordica charantia L.). Cucurbit Genet Coop Rep 33(34):65–66

    Google Scholar 

  13. Sunny AM, Pradeepkumar T, Minimol JS, Mathew D, Kutty MS, Anitha P (2022) Potential of gynoecious line in generating superior heterotic hybrids in bitter gourd (Momordica charantia L.). Indian J Plant Genet Resour 35(1):27–33. https://doi.org/10.5958/0976-1926.2022.00005.5

    Article  Google Scholar 

  14. Alhariri A, Behera TK, Munshi AD, Bharadwaj C, Jat GS (2018) Exploiting gynoecious line for earliness and yield traits in bitter gourd (Momordica charantia L.). Int J Curr Microbiol Appl Sci 7(11):922–928

    Article  Google Scholar 

  15. Wehner TC, Miller CH (1985) Effect of gynoecious expression on yield and earliness of a fresh-market cucumber hybrid. J Amer Soc Hortic Sci 110(4):464–466. https://doi.org/10.21273/JASHS.110.4.464

    Article  Google Scholar 

  16. Airina CK, Pradeepkumar T, George TE, Sadhankumar PG, Krishnan S (2013) Heterosis breeding exploiting gynoecy in cucumber (Cucumis sativus L.). J Tropic Agric 51(1):144–148

    Google Scholar 

  17. Kumar S, Kumar R, Kumar D, Gautam N, Dogra RK, Mehta DK, Sharma HD, Kansal S (2016) Parthenocarpic gynoecious parental lines of cucumber introduced from Netherlands for developing high-yielding, quality hybrids. J Crop Improv 30(3):352–369. https://doi.org/10.1080/15427528.2016.1163762

    Article  CAS  Google Scholar 

  18. El-Shawaf IIS, Baker LR (1981) Combining ability and genetic variances of G× H F1 hybrids for parthenocarpic yield in gynoecious pickling cucumber for once-over mechanical harvest. J Amer Soc Hortic Sci 106(3):365–70. https://doi.org/10.21273/JASHS.106.3.365

    Article  Google Scholar 

  19. Mathew D (2022) Omics in vegetable crops: Cucurbitaceae and Amaryllidaceae. In: Rout GR, Peter KV (eds) Omics in horticultural crops. ISBN 978-0-323-89905-5. Academic Press, Elsevier Inc., pp 239–280. https://doi.org/10.1016/B978-0-323-89905-5.00005-7

  20. Mishra S, Behera TK, Munshi AD, Gaikwad K, Mohapatra T (2014) Identification of RAPD markers associated with gynoecious trait (‘gy-1’ gene) in bitter gourd (Momordica charantia L.). Aust J Crop Sci 8:706–710

    CAS  Google Scholar 

  21. Gaikwad AB, Saxena S, Behera TK, Archak S, Meshram S (2014) Molecular marker to identify gynoecious line in bitter gourd. Indian J Hortic 71:142–144

    Google Scholar 

  22. Matsumura H, Miyagi N, Tanaiai N, Fukushima M, Tarora K, Shudo A, Urasaki N (2014) Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-seq analysis. PLoS ONE 9:e87138. https://doi.org/10.1371/journal.pone.0087138

    Article  CAS  Google Scholar 

  23. Shukla A, Singh VK, Bharadwaj DR, Kumar R, Rai A, Rai AK, Naik PS (2015) De novo assembly of bitter gourd transcriptomes: gene expression and sequence variations in gynoecious and monoecious lines. PLoS ONE 10:e0128331. https://doi.org/10.1371/journal.pone.0128331

    Article  CAS  Google Scholar 

  24. Matsumura H, Urasaki N (2020) Genome sequence of bitter gourd and its comparative study with other Cucurbitaceae genomes. In: Kole C, Matsumura H, Behera TK (eds) The Bitter Gourd Genome: Compendium of Plant Genomes 1 Ed, ISBN: 978-3-030-15061-7. Springer, Switzerland, pp 113–123. https://doi.org/10.1007/978-3-030-15062-4_10

  25. Kahana A, Silberstein L, Kessler N, Goldstein RS, Perl-Treves R (1999) Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol Biol 41(4):517–528

    Article  CAS  Google Scholar 

  26. Wang R, Zhang M, Huang R, Liu W, Dong W, Che J, Fang F, Li Y (2013) Cloning and sequence analysis of 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene cDNA from gynoecious Momordica charantia. Biotechnol Bull 0(10):76–80

    Google Scholar 

  27. Martínez C, Jamilena M (2021) To be a male or a female flower, a question of ethylene in cucurbits. Curr Opin Plant Biol 59:101981

    Article  Google Scholar 

  28. Peng SM, Luo T, Zhou JY, Niu B, Lei NF, Tang L, Chen F (2008) Cloning and quantification of expression levels of two MADS-box genes from Momordica charantia. Biol Plant 52:222–230. https://doi.org/10.1007/s10535-008-0049-9

    Article  CAS  Google Scholar 

  29. Gunnaiah R, Vinod MS, Prasad K, Elangovan M (2014) Identification of candidate genes, governing gynoecy in bitter gourd (Momordica charantia L.) by in-silico gene expression analysis. Int J Comput Appl 2:5–9

    Google Scholar 

  30. Jose MA (2019) Breeding for gynoecy in bitter gourd (Momordica charantia L.). MSc Horticulture Thesis, Kerala Agricultural University, India

  31. Urasaki N, Takagi H, Natsume S, Uemura A, Taniai N, Miyagi N, Fukushima M, Suzuki S, Tarora K, Tamaki M, Sakamoto M, Terauchi R, Matsumura H (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24(1):51–58. https://doi.org/10.1093/dnares/dsw047

    Article  CAS  Google Scholar 

  32. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–21. https://doi.org/10.1007/BF02712670

    Article  CAS  Google Scholar 

  33. Wangkumhang P, Chaichoompu K, Ngamphiw C, Ruangrit U, Chanprasert J, Assawamakin A, Tongsima S (2007) WASP: a Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations. BMC Genomics 8:275. https://doi.org/10.1186/1471-2164-8-275

    Article  CAS  Google Scholar 

  34. Kamachi S, Sekimoto H, Kondo N, Sakai S (1997) Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiol 38:1197–1206. https://doi.org/10.1093/oxfordjournals.pcp.a029106

    Article  CAS  Google Scholar 

  35. Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS ONE 4:e6144. https://doi.org/10.1371/journal.pone.0006144

    Article  CAS  Google Scholar 

  36. Chen H, Sun J, Li S, Cui Q, Zhang H, Xin F, Wang H, Lin T, Gao D, Wang S, Li X, Wang D, Zhang Z, Xu Z, Huang S (2016) An ACC oxidase gene essential for cucumber carpel development. Mol Plant 9:1315–1327. https://doi.org/10.1016/j.molp.2016.06.018

    Article  CAS  Google Scholar 

  37. Kumari M (2015) Physiological and molecular characterisation of gynoecious line and genetics of fruit traits in bitter gourd (Momordica charantia L.). Doctoral dissertation, Indian Agricultural Research Institute, New Delhi, India

  38. Kram BW, Xu WW, Carter CJ (2009) Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues. BMC Plant Biol 9:92. https://doi.org/10.1186/1471-2229-9-92

    Article  CAS  Google Scholar 

  39. Bouché F, Lobet G, Tocquin P, Périlleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44:D1167–D1171. https://doi.org/10.1093/nar/gkv1054

    Article  CAS  Google Scholar 

  40. Wils CR, Kaufmann K (2017) Gene-regulatory networks controlling in florescence and flower development in Arabidopsis thaliana. Biochim Biophys Acta 1860:95–105. https://doi.org/10.1016/j.bbagrm.2016.07.014

    Article  CAS  Google Scholar 

  41. Kater MM, Colombo L, Franken J, Busscher M, Masiero S, Campagne MMVL, Angenent GC (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171–182. https://doi.org/10.1105/tpc.10.2.171

    Article  CAS  Google Scholar 

  42. Porat TN, Cohen D, Mathew D, Kamenetsky R, Flaishman M (2013) Turned on by heat: differential expression of FT and LFY-like genes in Narcissus tazetta during floral transition. J Exp Bot 64:3273–3284. https://doi.org/10.1093/jxb/ert165

    Article  CAS  Google Scholar 

  43. Mathew D (2017) Molecular biology of flowering in plants. In: Peter KV (ed) Production and Protection of Horticultural Crops ISBN 9789386546418, New India Publishing Agency, New Delhi, pp 1–22

  44. Hsieh C, Do YY (2019) Genome-wide Identification and analysis of MADS-box gene family in bitter gourd. In: Abstracts of Graduate Student Research Poster Presentation Competition, National Taiwan University. https://doi.org/10.13140/RG.2.2.29416.29445

  45. Matsumura H, Hsiao MC, Lin YP, Toyoda A, Taniai N, Tarora K, Urasaki N, Anand SS, Dhillon NPS, Schafleitner R, Lee CR (2020) Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication. Proc Nat Acad Sci USA 117:14543–14551. https://doi.org/10.1073/pnas.1921016117

    Article  CAS  Google Scholar 

  46. Cui J, Luo S, Niu Y, Huang R, Wen Q, Su J, Miao N, He W, Dong Z, Cheng J, Hu K (2018) A RAD-based genetic map for anchoring scaffold sequences and identifying QTLs in bitter gourd (Momordica charantia). Front Plant Sci 9:477. https://doi.org/10.3389/fpls.2018.00477

    Article  Google Scholar 

  47. Rao PG, Behera TK, Gaikwad AB, Munshi AD, Jat GS, Boopalakrishnan G (2018) Mapping and QTL analysis of gynoecy and earliness in bitter gourd (Momordica charantia L.) using Genotyping-by-Sequencing (GBS) technology. Front Plant Sci 9:1555. https://doi.org/10.3389/fpls.2018.01555

    Article  Google Scholar 

  48. Gupta PK, Roy JK (2002) Molecular markers in crop improvement: present status and future needs in India. Plant Cell Tiss Org Cult 70:229–234. https://doi.org/10.1023/A:1016597404454

    Article  Google Scholar 

  49. Win KT, Zhang C, Song K, Lee JH, Lee S (2015) Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.). Mol Breed 35:229. https://doi.org/10.1007/s11032-015-0424-0

    Article  CAS  Google Scholar 

  50. Ram D, Kumar S, Singh M, Rai M, Kalloo G (2006) Inheritance of gynoecism in bitter gourd (Momordica charantia L.). J Hered 97:294–295. https://doi.org/10.1093/jhered/esj028

    Article  CAS  Google Scholar 

  51. Behera TK, Dey SS, Munshi AD, Gaikwad AB, Pal A, Singh I (2009) Sex inheritance and development of gynoecious hybrids in bitter gourd (Momordica charantia L.). Sci Hortic 120:130–133. https://doi.org/10.1016/j.scienta.2008.09.006

    Article  Google Scholar 

  52. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. https://doi.org/10.1371/journal.pone.0003376

    Article  CAS  Google Scholar 

  53. Li Z, Han Y, Niu H, Wang Y, Jiang B, Weng Y (2020) Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent Femaleness (F) locus. Hortic Res 7:32. https://doi.org/10.1038/s41438-020-0251-2

    Article  CAS  Google Scholar 

  54. Jayaraj KL, Thulasidharan N, Antony A, John M, Augustine R, Chakravartty N, Sukumaran S, Maheswari MU, Abraham S, Thomas G, Lachagari VBR, Seshagiri S, Narayanan S, Kuriakose B (2021) Targeted editing of tomato carotenoid isomerase reveals the role of 5′ UTR region in gene expression regulation. Plant Cell Rep 40:621–635. https://doi.org/10.1007/s00299-020-02659-0

    Article  CAS  Google Scholar 

  55. Morello L, Breviario D (2008) Plant spliceosomal introns: not only cut and paste. Curr Genomics 9:227–238. https://doi.org/10.2174/138920208784533629

    Article  CAS  Google Scholar 

  56. Latrasse D, Rodriguez-Granados NY, Veluchamy A, Mariappan KG, Bevilacqua C, Crapart N, Camps C, Sommard V, Raynaud C, Dogimont C, Boualem A (2017) The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo. Epigenet Chromatin 10:22. https://doi.org/10.1186/s13072-017-0132-6

    Article  CAS  Google Scholar 

  57. Aamir M, Karmakar P, Singh VK, Kashyap SP, Pandey S, Singh BK, Singh PM, Singh J (2021) A novel insight into transcriptional and epigenetic regulation underlying sex expression and flower development in melon (Cucumis melo L.). Physiol Plant 173(4):1729–64. https://doi.org/10.1111/ppl.13357

    Article  CAS  Google Scholar 

  58. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461(7267):1135–1138. https://doi.org/10.1038/nature08498

    Article  CAS  Google Scholar 

  59. Lai YS, Shen D, Zhang W, Zhang X, Qiu Y, Wang H, Dou X, Li S, Wu Y, Song J, Ji G (2018) Temperature and photoperiod changes affect cucumber sex expression by different epigenetic regulations. BMC Plant Biol 18:268. https://doi.org/10.1186/s12870-018-1490-3

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

PT, DM and MJS have conceptualized and designed the study, NB has performed the investigation, VK participated in laboratory and data analysis, NB, PT and DM have written and revised the manuscript.

Corresponding author

Correspondence to Deepu Mathew.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Research involving human and animal rights

Human and animal experiment were not involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baluchamy, N., Thayyil, P., Mathew, D. et al. Candidate gene based SSR and SNP markers for gynoecy in bitter gourd (Momordica charantia L.). Mol Biol Rep 50, 1125–1132 (2023). https://doi.org/10.1007/s11033-022-08098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08098-2

Keywords

Navigation