Skip to main content

Advertisement

Log in

Evaluation of osteogenic induction potency of miR-27a-3p in adipose tissue-derived human mesenchymal stem cells (AD-hMSCs)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Bone tissue as a dynamic tissue is able to repair its minor injuries, however, sometimes the repair cannot be completed by itself due to the size of lesion. In such cases, the best treatment could be bone tissue engineering. The use of stem cells in skeletal disorders to repair bone defects has created bright prospects. On the other hand, changes in the expression level of microRNAs (miRs) can lead to the commitment of mesenchymal stem cells (MSCs) to cell lineage. Many studies reported that post-transcriptional regulations by miRNAs are involved in all stages of osteoblast differentiation.

Method

After the preparing adipose tissue-derived mesenchymal stem cells, the target cells from the third passage were cultured in two groups, transfected MSCs with miR-27a-3p (DM.C + P) and control group. In different times, 7 and 14 days after culture, differentiation of these cells into osteoblast were measured using various techniques including the ALP test and calcium content test, Alizarin Red staining, Immunocytochemistry technique (ICC). Also, the relative expression of bone differentiation marker genes including Osteonectin (ON), Osteocalcin (OC), RUNX Family Transcription Factor 2 (RUNX2), Collagen type I alpha 1 (COL1) was investigated by real-time RT PCR.

Results

In comparison with control groups, overexpression of miR-27a-3p in transfected cells resulted in a significant increase in the expression of bone markers genes (ON, OC, RUNX2, COL1), alkaline phosphatase (ALP) activity, and calcium content (p < 0.05). In addition, the results obtained from ICC technique showed that osteocalcin protein is expressed at the surface of bone cells. Furthermore, the expression of APC, as a target of miR-27a-3p, decreased in transfected cells.

Conclusion

Our data suggest that miR-27a-3p may positively regulates adipose tissue-derived mesenchymal stem cell differentiation into bone by targeting APC and activating the Wnt/b-catenin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

WNT:

Wnt/β-catenin pathway

TGF-β:

TGF-beta signaling

BMP:

Bone morphogenetic proteins

FGF :

Fibroblast growth factors

OC :

Osteocalcin

ON :

Osteonectin

COL1 :

Collagen type I alpha 1

RUNX2 :

RUNX Family Transcription Factor 2

MiRs:

MicroRNAs

MSC:

Mesenchymal Stem Cells

ADMSCs:

Adipose-derived mesenchymal stem cells

APC :

Adenomatous polyposis coli

hBMSCs:

Human bone marrow stem cells

DMEM:

Dulbecco's Modified Eagle Medium

ICC:

Immunocytochemistry

ALP :

Alkaline phosphatase

References

  1. Cheng H, Chawla A, Yang Y, Li Y, Zhang J, Jang HL et al (2017) Development of nanomaterials for bone-targeted drug delivery. Drug Discovery Today 22(9):1336–1350

    Article  CAS  Google Scholar 

  2. Tahmasebi A, Shapouri Moghadam A, Enderami SE, Islami M, Kaabi M, Saburi E et al (2020) Aloe vera-derived gel-blended PHBV nanofibrous scaffold for bone tissue engineering. ASAIO J (American Society for Artificial Internal Organs : 1992) 66(8):966–973

    Article  CAS  Google Scholar 

  3. Gu C, Xu Y, Zhang S, Guan H, Song S, Wang X et al (2016) miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1. Sci Rep 6:38491

    Article  CAS  Google Scholar 

  4. Abazari MF, Hosseini Z, Zare Karizi S, Norouzi S, Amini Faskhoudi M, Saburi E et al (2020) Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene 740:144534

    Article  CAS  Google Scholar 

  5. Aronson J (1997) Current concepts review-limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Jt Surg 79(8):1243–1258

    Article  CAS  Google Scholar 

  6. Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M (2020) Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 11(1):1–21

    Article  Google Scholar 

  7. Mirzaei A, Saburi E, Enderami SE, Barati Bagherabad M, Enderami SE, Chokami M et al (2019) Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold. Artif Cells Nanomedicine Biotechnol 47(1):3058–3066

    Article  CAS  Google Scholar 

  8. Friedenstein A, Piatetzky-Shapiro I, Petrakova K (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–90

    CAS  Google Scholar 

  9. Abazari MF, Soleimanifar F, Enderami SE, Nematzadeh M, Nasiri N, Nejati F et al (2019) Incorporated-bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation. J Cell Biochem 120(10):16750–16759

    Article  CAS  Google Scholar 

  10. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  Google Scholar 

  11. Zhang X, Yang M, Lin L, Chen P, Ma KT, Zhou CY et al (2006) Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose–derived stem cells in vitro and in vivo. Calcif Tissue Int 79(3):169–178

    Article  CAS  Google Scholar 

  12. Fatemeh Sadat, Hosseini Seyedeh Elnaz, Enderami Ali, Hadian Mohammad Foad, Abazari Abdolreza, Ardeshirylajimi Ehsan, Saburi Fatemeh, Soleimanifar Bahareh, Nazemisalman (2019) Efficient osteogenic differentiation of the dental pulp stem cells on β‐glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers. Journal of Cellular Physiology 234(8):13951–13958. https://doi.org/10.1002/jcp.28078

    Article  CAS  Google Scholar 

  13. Seifrtová M, Havelek R, Cmielová J, Jiroutová A, Soukup T, Brůčková L et al (2012) The response of human ectomesenchymal dental pulp stem cells to cisplatin treatment. Int Endod J 45(5):401–412

    Article  Google Scholar 

  14. Raynaud CM, Maleki M, Lis R, Ahmed B, Al-Azwani I, Malek J et al (2012) Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem Cells Int 2012:658356

    Article  CAS  Google Scholar 

  15. Jiao F, Wang J, Dong ZL, Wu MJ, Zhao TB, Li DD et al (2012) Human mesenchymal stem cells derived from limb bud can differentiate into all three embryonic germ layers lineages. Cell Reprogram 14(4):324–333

    Article  CAS  Google Scholar 

  16. Fatemeh Sadat, Hosseini Fatemeh, Soleimanifar Amir, Aidun Seyedeh Elnaz, Enderami Ehsan, Saburi Hadi Zare, Marzouni Mohammad‐Mehdi, Khani Arash, Khojasteh Abdolreza, Ardeshirylajimi (2019) Poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix. Journal of Cellular Physiology 234(7):11537–11544. https://doi.org/10.1002/jcp.27807

    Article  CAS  Google Scholar 

  17. Soleimanifar F, Hosseini FS, Atabati H, Behdari A, Kabiri L, Enderami SE et al (2019) Adipose-derived stem cells-conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. J Cell Physiol 234(7):10315–10323

    Article  CAS  Google Scholar 

  18. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34(6):747–754

    Article  CAS  Google Scholar 

  19. Han X, Fan Z (2021) MicroRNAs regulation in osteogenic differentiation of mesenchymal stem cells. Front Dent Med. https://doi.org/10.3389/fdmed.2021.747068

    Article  Google Scholar 

  20. Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM et al (2018) The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep 8(1):1–12

    Article  CAS  Google Scholar 

  21. Buhagiar A, Borg J, Ayers D (2020) Overview of current microRNA biomarker signatures as potential diagnostic tools for leukaemic conditions. Non-Coding RNA Res 5(1):22–26

    Article  CAS  Google Scholar 

  22. Ying S-Y, Chang DC, Lin S-L (2008) The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 38(3):257–268

    Article  CAS  Google Scholar 

  23. Frith JE, Porrello ER, Cooper-White JJ (2014) Concise review: new frontiers in microRNA-based tissue regeneration. Stem Cells Transl Med 3(8):969–976

    Article  CAS  Google Scholar 

  24. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem cells 28(2):357–364

    Article  Google Scholar 

  25. Mu Y, Zhang L, Chen X, Chen S, Shi Y, Li J (2019) Silencing microRNA-27a inhibits proliferation and invasion of human osteosarcoma cells through the SFRP1-dependent Wnt/β-catenin signaling pathway. Biosci Rep. https://doi.org/10.1042/BSR20182366

  26. Xu C, Cheng H, Li N, Zhou N, Tang X (2019) Relationship between microRNA-27a and efficacy of neoadjuvant chemotherapy in gastric cancer and its mechanism in gastric cancer cell growth and metastasis. Biosci Rep. https://doi.org/10.1042/BSR20181175

  27. Chen Z, Ma T, Huang C, Zhang L, Lv X, Xu T et al (2013) MiR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/β-catenin pathway in hepatocellular carcinoma cells. Cell Signal 25(12):2693–2701

    Article  CAS  Google Scholar 

  28. Feng DD, Zhang H, Zhang P, Zheng YS, Zhang XJ, Han BW et al (2011) Down-regulated miR-331–5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med 15(10):2164–2175

    Article  CAS  Google Scholar 

  29. Finch A, Metcalfe K, Chiang J, Elit L, McLaughlin J, Springate C et al (2011) The impact of prophylactic salpingo-oophorectomy on menopausal symptoms and sexual function in women who carry a BRCA mutation. Gynecol Oncol 121(1):163–168

    Article  CAS  Google Scholar 

  30. Su C, Huang DP, Liu JW, Liu WY, Cao YO (2019) miR-27a-3p regulates proliferation and apoptosis of colon cancer cells by potentially targeting BTG1. Oncol Lett 18(3):2825–2834

    CAS  Google Scholar 

  31. Shen C, Yang C, Xu S, Zhao H (2019) Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci 9:17

    Article  Google Scholar 

  32. Enderami SE, Soleimani M, Mortazavi Y, Nadri S, Salimi A (2018) Generation of insulin-producing cells from human adipose-derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. J Cell Physiol 233(5):4327–4337

    Article  CAS  Google Scholar 

  33. Aghaee-Bakhtiari SH, Arefian E, Soleimani M, Noorbakhsh F, Samiee SM, Fard-Esfahani P et al (2016) Reproducible and reliable real-time PCR assay to measure mature form of miR-141. Appl Immunohistochem Mol Morphol 24(2):138–143

    Article  CAS  Google Scholar 

  34. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem cells 25(11):2739–2749

    Article  CAS  Google Scholar 

  35. Park SJ, Jung S-H, Jogeswar G, Ryoo H-M, Yook JI, Choi HS et al (2010) The transcription factor snail regulates osteogenic differentiation by repressing Runx2 expression. Bone 46(6):1498–1507

    Article  CAS  Google Scholar 

  36. Baksh D, Tuan RS (2007) Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol 212(3):817–826

    Article  CAS  Google Scholar 

  37. Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5(2):73–80

    Article  Google Scholar 

  38. Li Z, Xu Z, Duan C, Liu W, Sun J, Han B (2018) Role of TCF/LEF transcription factors in bone development and osteogenesis. Int J Med Sci 15(12):1415

    Article  CAS  Google Scholar 

  39. Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC et al (2021) MicroRNAs modulate signaling pathways in osteogenic differentiation of mesenchymal stem cells. Int J Mol Sci 22(5):2362

    Article  CAS  Google Scholar 

  40. Almalki SG, Agrawal DK (2016) Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92(1–2):41–51

    Article  CAS  Google Scholar 

  41. Witkowska-Zimny M, Wrobel E, Przybylski J (2010) The most important transcriptional factors of osteoblastogenesis. Med J Cell Biol 2(1):17–28

    Google Scholar 

  42. Reis RL (2019) Encyclopedia of tissue engineering and regenerative medicine. Academic Press, Cambridge

    Google Scholar 

  43. Tu Q, Valverde P, Li S, Zhang J, Yang P, Chen J (2007) Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng 13(10):2431–2440

    Article  CAS  Google Scholar 

  44. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53(1–2):25–35

    CAS  Google Scholar 

  45. Doyle LA, Hornick JL. Immunohistology of neoplasms of soft tissue and bone. Diagnostic Immunohistochemistry E-Book: Theranostic and Genomic Applications. 2017:82.

  46. Levinger I, Zajac JD, Seeman E. Osteocalcin, undercarboxylated osteocalcin, and glycemic control in human subjects. Translational Endocrinology of Bone: Reproduction, Metabolism, and the Central Nervous System. 2012:181.

  47. Greenblatt MB, Tsai JN, Wein MN (2017) Bone Turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 63(2):464–474

    Article  CAS  Google Scholar 

  48. Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285(33):25221–25231

    Article  CAS  Google Scholar 

  49. Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H et al (2015) MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6(8):e1851

    Article  CAS  Google Scholar 

  50. Dai Z, Jin Y, Zheng J, Liu K, Zhao J, Zhang S et al (2019) MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomed Pharmacother 109:1112–1119

    Article  CAS  Google Scholar 

  51. Li H, Fan J, Fan L, Li T, Yang Y, Xu H et al (2018) MiRNA-10b reciprocally stimulates osteogenesis and inhibits adipogenesis partly through the TGF-β/SMAD2 signaling pathway. Aging Dis 9(6):1058

    Article  Google Scholar 

  52. Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott C-E, Knaus P (2013) miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int J Biochem Cell Biol 45(3):696–705

    Article  CAS  Google Scholar 

  53. Gámez B, Rodríguez-Carballo E, Bartrons R, Rosa JL, Ventura F (2013) MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem 288(20):14264–14275

    Article  Google Scholar 

  54. Guo D, Li Q, Lv Q, Wei Q, Cao S, Gu J (2014) MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation. PLoS ONE 9(3):e91354

    Article  Google Scholar 

  55. Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402(2):186–189

    Article  CAS  Google Scholar 

  56. Hassan MQ, Gordon JA, Beloti MM, Croce CM, Van Wijnen AJ, Stein JL et al (2010) A network connecting Runx2, SATB2, and the miR-23a∼ 27a∼ 24–2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci 107(46):19879–19884

    Article  CAS  Google Scholar 

  57. Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q, Force Aldred S et al (2009) Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS ONE 4(5):e5605

    Article  Google Scholar 

  58. Lim J, Sakai E, Sakurai F, Mizuguchi H (2021) miR-27b antagonizes BMP signaling in early differentiation of human induced pluripotent stem cells. Sci Rep 11(1):1–10

    Article  Google Scholar 

  59. Nakasa T, Yoshizuka M, Andry Usman M, Elbadry Mahmoud E, Ochi M (2015) MicroRNAs and bone regeneration. Curr Genomics 16(6):441–452

    Article  CAS  Google Scholar 

  60. Zeng H-C, Bae Y, Dawson BC, Chen Y, Bertin T, Munivez E et al (2017) MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts. Nat Commun 8(1):1–9

    Article  Google Scholar 

  61. Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5(8):442–447

    Article  CAS  Google Scholar 

  62. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  CAS  Google Scholar 

  63. Ardeshirylajimi A, Golchin A, Khojasteh A, Bandehpour M (2018) Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. Artif Cells, Nanomedicine Biotechnol 46(sup3):S943–S949

    Article  CAS  Google Scholar 

  64. Xu Q, Cui Y, Luan J, Zhou X, Li H, Han J (2018) Exosomes from C2C12 myoblasts enhance osteogenic differentiation of MC3T3-E1 pre-osteoblasts by delivering miR-27a-3p. Biochem Biophys Res Commun 498(1):32–37

    Article  CAS  Google Scholar 

  65. Mobasheri A, Fonseca JE, Gualillo O, Henrotin Y, Largo R, Herrero-Beaumont G et al (2021) Inflammation and biomarkers in osteoarthritis. Front Med. https://doi.org/10.3389/fmed.2021.727700

    Article  Google Scholar 

  66. Rocha FA, Ali SA (2022) Soluble biomarkers in osteoarthritis in 2022: year in review. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2022.09.005

    Article  Google Scholar 

  67. Hanafi AR, Jayusman AM, Alfasunu S, Sadewa AH, Pramono D, Heriyanto DS et al (2020) Serum MiRNA as predictive and prognosis biomarker in advanced stage non-small cell lung cancer in indonesia. Zhongguo fei ai za zhi = Chin j lung cancer 23(5):321–332

    Google Scholar 

  68. Hashemi M, Arani HZ, Orouei S, Rostamnejad E, Ghorbani A, Khaledabadi M et al (2022) Crosstalk of miRNAs With signaling networks in bladder cancer progression: therapeutic diagnostic and prognostic functions. Pharmacol Res 185:106475

    Article  CAS  Google Scholar 

  69. Zhang J, Mao S, Wang L, Zhang W, Zhang Z, Guo Y et al (2019) MicroRNA-154 functions as a tumor suppressor in bladder cancer by directly targeting ATG7. Oncol Rep 41(2):819–828

    CAS  Google Scholar 

  70. Menon A, Abd-Aziz N, Khalid K, Poh CL, Naidu R (2022) miRNA: a promising therapeutic target in cancer. Int J Mol Sci [Internet] 23(19):11502

    Article  CAS  Google Scholar 

  71. Yan X, Yu H, Liu Y, Hou J, Yang Q, Zhao Y (2019) miR-27a-3p Functions as a tumor suppressor and regulates non-small cell lung cancer cell proliferation via targeting HOXB8. Technol Cancer Res Treat 18:1533033819861971

    Article  CAS  Google Scholar 

  72. Shah MY, Calin GA (2014) MicroRNAs as therapeutic targets in human cancers. Wiley interdiscip Rev RNA 5(4):537–548

    Article  CAS  Google Scholar 

  73. Fatemeh, Soleimanifar Fatemeh Sadat, Hosseini Hadi, Atabati Asma, Behdari Ladan, Kabiri Seyed Ehsan, Enderami Mohammad‐Mehdi, Khani Abdolreza, Ardeshirylajimi Ehsan, Saburi (2019) Adipose‐derived stem cells‐conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. Journal of Cellular Physiology 234(7):10315-10323. https://doi.org/10.1002/jcp.27697

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to appreciate Research Deputy of Mashhad University of Medical Sciences for supporting this study (IR.MUMS.REC.1400.329).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Pasdar or Ehsan Saburi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arab, F., Aghaee Bakhtiari, S.H., Pasdar, A. et al. Evaluation of osteogenic induction potency of miR-27a-3p in adipose tissue-derived human mesenchymal stem cells (AD-hMSCs). Mol Biol Rep 50, 1281–1291 (2023). https://doi.org/10.1007/s11033-022-08084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08084-8

Keywords

Navigation