Skip to main content
Log in

Global DNA and protein interactomes of FLT1P1 (Fms-related tyrosine kinase 1 pseudogene 1) revealed its molecular regulatory functions associated with preeclampsia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Preeclampsia (PE) is one of the most serious pregnancy complications with unknown pathogenesis. Emerging evidence has demonstrated that Fms-related tyrosine kinase 1 (FLT1) is highly involved in PE development. As a pseudogene of FLT1, FLT1P1 increased in PE samples. However, its functions remain largely unknown.

Methods and results

In this study, co-expression analysis was performed to identify the potential target genes of FTL1P1. Then chromatin isolation using RNA purification (ChIRP) method was employed to explore the interactomes of FLT1P1, including interacting with DNA fragments and proteins. We found that in PE samples, both FLT1P1 and FLT1 were highly expressed and closely correlated. ChIRP-protein data revealed that FLT1P1 interacts with translation- and transcription-related proteins, including 4 transcription factors (TFs). ChIRP-DNA analysis revealed that FLT1P1 preferentially interacted with DNA fragments downstream of transcription start sites (TSSs). Functional analysis of its interacting genes revealed that they were enriched in transcriptional regulation and apoptosis-related pathways. Twenty-six TFs, including CREB1 and SRF, were extracted from the potential FLT1P1-interacting gene sets and were potential targets of FLT1P1. CREB1 could bind to FLT1 promoter, and was negatively correlated with FLT1 at the expression level, making it a potential regulator of FLT1.

Conclusions

Our study extensively investigated the interactome profiles of FLT1P1, especially the prompter region of TF gene CREB1, and revealed the potential molecular regulatory mechanisms of FLT1 expression in PE samples. Our results provide a novel view of PE pathogenesis, and suggest that FLT1P1 could serve as a potential therapeutic target in PE diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analyzed for this study can be found in the Gene Expression Omnibus (GEO) database with accession number GSE183012 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183012.

References

  1. Rana S, Lemoine E, Granger JP, Karumanchi SA (2019) Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res 124:1094–1112

    Article  CAS  Google Scholar 

  2. Duckitt K, Harrington D (2005) Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 330:565

    Article  Google Scholar 

  3. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308:1592–1594

    Article  CAS  Google Scholar 

  4. Romero R, Chaiworapongsa T (2013) Preeclampsia: a link between trophoblast dysregulation and an antiangiogenic state. J Clin Invest 123:2775–2777

    Article  CAS  Google Scholar 

  5. Gray KJ, Kovacheva VP, Mirzakhani H, Bjonnes AC, Almoguera B, DeWan AT, Triche EW, Saftlas AF, Hoh J, Bodian DL (2018) Gene-centric analysis of preeclampsia identifies maternal association at PLEKHG1. Hypertension 72:408–416

    Article  CAS  Google Scholar 

  6. McGinnis, R., Steinthorsdottir, V., Williams, N. O., Thorleifsson, G., Shooter, S., Hjartardottir, S., Bumpstead, S., Stefansdottir, L., Hildyard, L., Sigurdsson, J. K., Kemp, J. P., Silva, G. B., Thomsen, L. C. V., Jaaskelainen, T., Kajantie, E., Chappell, S., Kalsheker, N., Moffett, A., Hiby, S., Lee, W. K., Padmanabhan, S., Simpson, N. A. B., Dolby, V. A., Staines-Urias, E., Engel, S. M., Haugan, A., Trogstad, L., Svyatova, G., Zakhidova, N., Najmutdinova, D., Consortium, F., Consortium, G., Dominiczak, A. F., Gjessing, H. K., Casas, J. P., Dudbridge, F., Walker, J. J., Pipkin, F. B., Thorsteinsdottir, U., Geirsson, R. T., Lawlor, D. A., Iversen, A. C., Magnus, P., Laivuori, H., Stefansson, K. & Morgan, L. (2017) Variants in the fetal genome near FLT1 are associated with risk of preeclampsia, Nat Genet. 49, 1255-1260.

  7. Cnattingius S, Reilly M, Pawitan Y, Lichtenstein P (2004) Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet A 130A:365–371

    Article  Google Scholar 

  8. Maynard SE, Karumanchi SA (2011) Angiogenic factors and preeclampsia. Semin Nephrol. https://doi.org/10.1016/j.semnephrol.2010.10.004

    Article  Google Scholar 

  9. Levine RJ, Maynard SE, Qian C, Lim K-H, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683

    Article  CAS  Google Scholar 

  10. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658

    Article  CAS  Google Scholar 

  11. Hod T, Cerdeira AS, Karumanchi SA (2015) Molecular mechanisms of preeclampsia. Cold Spring Harb Perspect Med 5:a023473

    Article  Google Scholar 

  12. Mutter WP, Karumanchi SA (2008) Molecular mechanisms of preeclampsia. Microvasc Res 75:1–8

    Article  CAS  Google Scholar 

  13. Robertson SA (2019) Preventing preeclampsia by silencing soluble Flt-1? N Engl J Med 380:1080–1082

    Article  Google Scholar 

  14. Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118

    Article  CAS  Google Scholar 

  15. Zhao H, Shi J, Zhang Y, Xie A, Yu L, Zhang C, Lei J, Xu H, Leng Z, Li T, Huang W, Lin S, Wang L, Xiao Y, Li X (2020) LncTarD: a manually-curated database of experimentally-supported functional lncRNA-target regulations in human diseases. Nucleic Acids Res 48:D118–D126

    CAS  Google Scholar 

  16. Song X, Luo X, Gao Q, Wang Y, Gao Q, Long W (2017) Dysregulation of LncRNAs in placenta and pathogenesis of preeclampsia. Curr Drug Targets 18:1165–1170

    Article  CAS  Google Scholar 

  17. Liu C, Li H, Zhang Y, Ding H (2021) Long intergenic noncoding RNA 00473 promoting migration and invasion of trophoblastic cell line HTR-8/SVneo via regulating miR-424–5p-mediated wnt3a/beta-catenin signaling pathway. J Obstet Gynaecol Res. https://doi.org/10.1111/jog.14870

    Article  Google Scholar 

  18. Zhang Y, He XY, Qin S, Mo HQ, Li X, Wu F, Zhang J, Li X, Mao L, Peng YQ, Guo YN, Lin Y, Tian FJ (2020) Upregulation of PUM1 expression in preeclampsia impairs trophoblast invasion by negatively regulating the expression of the lncRNA HOTAIR. Mol Ther 28:631–641

    Article  CAS  Google Scholar 

  19. Gao Y, Guo X, Li Y, Sha W, She R (2019) The decreased lncRNA ZEB2-AS1 in pre-eclampsia controls the trophoblastic cell line HTR-8/SVneo’s invasive and migratory abilities via the miR-149/PGF axis. J Cell Biochem 120:17677–17686

    Article  CAS  Google Scholar 

  20. He X, He Y, Xi B, Zheng J, Zeng X, Cai Q, Ouyang Y, Wang C, Zhou X, Huang H, Deng W, Xin S, Huang Q, Liu H (2013) LncRNAs expression in preeclampsia placenta reveals the potential role of LncRNAs contributing to preeclampsia pathogenesis. PLoS ONE 8:e81437

    Article  Google Scholar 

  21. Chi Z, Sun Y, Yu Z, Zhou F, Wang H, Zhang M (2021) Pseudogene fms-related tyrosine kinase 1 pseudogene 1 (FLT1P1) cooperates with RNA binding protein dyskeratosis congenita 1 (DKC1) to restrain trophoblast cell proliferation and angiogenesis by targeting fms-related tyrosine kinase 1 (FLT1) in preeclampsia. Bioengineered 12:8885–8897

    Article  CAS  Google Scholar 

  22. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  CAS  Google Scholar 

  23. Harrison PM, Zheng D, Zhang Z, Carriero N, Gerstein M (2005) Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 33:2374–2383

    Article  CAS  Google Scholar 

  24. Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2:e00762

    Article  Google Scholar 

  25. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M (2012) The GENCODE pseudogene resource. Genome Biol 13:1–26

    Article  Google Scholar 

  26. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DRF (2011) Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 17:792–798

    Article  CAS  Google Scholar 

  27. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  28. Zhang Y, Liu T, Meyer C, Eeckhoute J, Johnson D, Bernstein B, Nusbaum C, Myers R, Brown M, Li W, Liu X (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  Google Scholar 

  29. Ramírez F, Ryan D, Grüning B, Bhardwaj V, Kilpert F, Richter A, Heyne S, Dündar F, Manke T (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165

    Article  Google Scholar 

  30. Heinz S, Benner C, Spann N, Bertolino E, Lin Y, Laslo P, Cheng J, Murre C, Singh H, Glass C (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  CAS  Google Scholar 

  31. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, Lee S, Kang B, Jeong D, Kim Y, Jeon HN, Jung H, Nam S, Chung M, Kim JH, Lee I (2018) TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 46:D380–D386

    Article  CAS  Google Scholar 

  32. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322

    Article  Google Scholar 

  33. Turanov AA, Lo A, Hassler MR, Makris A, Ashar-Patel A, Alterman JF, Coles AH, Haraszti RA, Roux L, Godinho B, Echeverria D, Pears S, Iliopoulos J, Shanmugalingam R, Ogle R, Zsengeller ZK, Hennessy A, Karumanchi SA, Moore MJ, Khvorova A (2018) RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat Biotechnol. https://doi.org/10.1038/nbt.4297

    Article  Google Scholar 

  34. Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416

    Article  CAS  Google Scholar 

  35. Cao M, Zhao J, Hu G (2019) Genome-wide methods for investigating long noncoding RNAs. Biomed Pharmacother 111:395–401

    Article  CAS  Google Scholar 

  36. Long Y, Wang X, Youmans DT, Cech TR (2017) How do lncRNAs regulate transcription? Sci Adv 3:eaao2110

    Article  Google Scholar 

  37. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  Google Scholar 

  38. Habener JF, Miller CP, Vallejo M (1995) cAMP-dependent regulation of gene transcription by cAMP response element-binding protein and cAMP response element modulator. Vitam Horm 51:1–57

    Article  CAS  Google Scholar 

  39. Morishita K, Johnson DE, Williams LT (1995) A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J Biol Chem 270:27948–27953

    Article  CAS  Google Scholar 

  40. Rutnam ZJ, Du WW, Yang W, Yang X, Yang BB (2014) The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun 5:2914

    Article  Google Scholar 

  41. Milligan MJ, Lipovich L (2014) Pseudogene-derived lncRNAs: emerging regulators of gene expression. Front Genet 5:476

    Google Scholar 

  42. Giulietti M, Righetti A, Principato G, Piva F (2018) LncRNA co-expression network analysis reveals novel biomarkers for pancreatic cancer. Carcinogenesis 39:1016–1025

    Article  CAS  Google Scholar 

  43. Liu S, Wang Z, Chen D, Zhang B, Tian R, Wu J, Zhang Y, Xu K, Yang L, Cheng C, Ma J, Lv L, Zheng Y, Hu X, Zhang Y, Wang X, Li J (2017) Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res. https://doi.org/10.1101/gr.217463.116

    Article  Google Scholar 

  44. Leung DN, Smith SC, To K, Sahota DS, Baker PN (2001) Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 184:1249–1250

    Article  CAS  Google Scholar 

  45. Tomas SZ, Prusac IK, Roje D, Tadin I (2011) Trophoblast apoptosis in placentas from pregnancies complicated by preeclampsia. Gynecol Obstet Invest 71:250–255

    Article  CAS  Google Scholar 

  46. Raguema N, Moustadraf S, Bertagnolli M (2020) Immune and apoptosis mechanisms regulating placental development and vascularization in preeclampsia. Front Physiol 11:98

    Article  Google Scholar 

  47. Nakashima A, Cheng SB, Ikawa M, Yoshimori T, Huber WJ, Menon R, Huang Z, Fierce J, Padbury JF, Sadovsky Y, Saito S, Sharma S (2020) Evidence for lysosomal biogenesis proteome defect and impaired autophagy in preeclampsia. Autophagy 16:1771–1785

    Article  CAS  Google Scholar 

  48. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973

    Article  Google Scholar 

  49. Quinn JJ, Ilik IA, Qu K, Georgiev P, Chu C, Akhtar A, Chang HY (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32:933–940

    Article  CAS  Google Scholar 

  50. Simon MD, Wang CI, Kharchenko PV, West JA, Chapman BA, Alekseyenko AA, Borowsky ML, Kuroda MI, Kingston RE (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA 108:20497–20502

    Article  CAS  Google Scholar 

  51. Zou Y, Jiang Z, Yu X, Sun M, Zhang Y, Zuo Q, Zhou J, Yang N, Han P, Ge Z (2013) Upregulation of long noncoding RNA SPRY4-IT1 modulates proliferation, migration, apoptosis, and network formation in trophoblast cells HTR-8SV/neo. PLoS ONE 8:e79598

    Article  CAS  Google Scholar 

  52. Zou YF, Sun LZ (2015) Long noncoding RNA HOTAIR modulates the function of trophoblast cells in pre-eclampsia. Sichuan Da Xue Xue Bao Yi Xue Ban 46(113–7):122

    Google Scholar 

  53. Chen H, Meng T, Liu X, Sun M, Tong C, Liu J, Wang H, Du J (2015) Long non-coding RNA MALAT-1 is downregulated in preeclampsia and regulates proliferation, apoptosis, migration and invasion of JEG-3 trophoblast cells. Int J Clin Exp Pathol 8:12718

    CAS  Google Scholar 

  54. Chen J, Xia J, Wang S, Wei Y, Wu J, Huang G, Chen F, Shi J (2012) Study on transcription regulation network in rheumatoid arthritis via bioinformatics analysis. Afr J Pharm Pharmacol 6:1435–1443

    CAS  Google Scholar 

  55. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, Rosen N, Kohn A, Twik M, Safran M, Lancet D, Cohen D (2017) GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). https://doi.org/10.1093/database/bax028

    Article  Google Scholar 

  56. Tal R (2012) The role of hypoxia and hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol Reprod 87:134

    Article  Google Scholar 

  57. Karakas D, Ozpolat B (2021) The role of LncRNAs in translation. Noncoding RNA 7:16

    Article  CAS  Google Scholar 

  58. Huang J, Ling Z, Zhong H, Yin Y, Qian Y, Gao M, Ding H, Cheng Q, Jia R (2020) Distinct expression profiles of peptides in placentae from preeclampsia and normal pregnancies. Sci Rep 10:17558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants and their families for their cooperation. We would also like to thank Yaqiang Xue and Chao Cheng from ABLife Inc. for their kind help in performing the experiments and bioinformatics analysis.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81760277), Natural Science Foundation of Jiangxi Province (20192BAB20502) and Science and Technology Project of Jiangxi Provincial Health Commission (20191773).

Author information

Authors and Affiliations

Authors

Contributions

XH and DC designed the project. SH and KX collected the PE samples. SX, and LZ performed ChIRP experiment. SX, YW, YX, DR, and BW performed data analysis. LZ and SX wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaoju He.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 389 KB)

Supplementary file2 (PDF 107 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Xin, S., Wu, Y. et al. Global DNA and protein interactomes of FLT1P1 (Fms-related tyrosine kinase 1 pseudogene 1) revealed its molecular regulatory functions associated with preeclampsia. Mol Biol Rep 50, 1267–1279 (2023). https://doi.org/10.1007/s11033-022-08070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08070-0

Keywords

Navigation