Skip to main content

Advertisement

Log in

Expression analysis of circulating miR-22, miR-122, miR-217 and miR-367 as promising biomarkers of acute lymphoblastic leukemia

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The role of serum-based biomarkers such as microRNAs in cancer diagnosis has been extensively established. This study aimed to determine the expression levels of bioinformatically selected miRNAs and whether they can be used as biomarkers or a new therapeutic target in patients with acute lymphoblastic leukemia (ALL).

Materials and methods

The expression levels of serum miR-22, miR-122, miR-217, and miR-367 in 21 ALL patients and 21 healthy controls were measured using quantitative real-time PCR. The receiver operating characteristic (ROC) curve and the associated area under the curve (AUC) was used to assess candidate miRNAs’ diagnostic value as a biomarker.

Results

The results showed that miR-217 was markedly decreased in patients with ALL compared to controls. Moreover, miR-22, miR-122, and miR-367 were found to be upregulated. Furthermore, ROC analysis showed that serum miR-217 and miR-367 could differentiate ALL patients from healthy individuals, while miR-22 has approximate discriminatory power that requires further investigation.

Conclusion

These results provide promising preliminary evidence that circulating miR-217 and miR-367 could be considered potent diagnostic biomarkers and therapeutic goals in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. 2.−ΔΔCt = [(Ct gene of Interest-Ct internal control)] sample A – (Ct gene of Interest-Ct internal control) sample B)].

Abbreviations

ALL:

Acute lymphoblastic leukemia

RNA:

Ribonucleic acid

cDNA:

Complementary deoxyribonucleic acid

Rpm:

Revolutions per minute

PCR:

Polymerase chain reaction

QRT-PCR:

Quantitative real-time polymerase chain reaction

Ct:

Cycle of threshold

ROC:

Receiver operating characteristic

AUC:

Area under the receiver operating characteristic curve

PTEN:

Phosphatase and tensin homolog

PI3:

Phosphatidylinositol 3

TET-2:

Ten-eleven translocation-2

AML:

Acute myeloid leukemia

Myc:

Myelocytomatosis

MAPK:

Mitogen-activated protein kinase

RUNX2:

Runt-related transcription factor 2

E2F3:

E2F transcription factor 3

KRAS:

Kirsten rat sarcoma viral oncogene homolog

BCL-6:

B-cell lymphoma protein 6

OCT4:

Octamer-binding transcription factor 4

KLF4:

Krüppel-like factor 4

BAX:

B-cell lymphoma protein-2 associated X protein

NFAT:

Nuclear factor of activated T-cells

CREBB:

Cyclic-AMP response element binding protein B

mTOR:

Mammalian/mechanistic target of rapamycin

NOTCH1:

Neurogenic locus notch homolog protein 1

IGF1R:

Insulin-like growth factor 1 receptor

References

  1. Terwilliger T, Abdul-Hay M (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7(6):e577

    Article  CAS  Google Scholar 

  2. Malard F, Mohty M (2020) Acute lymphoblastic leukaemia. Lancet 395(10230):1146–1162

    Article  CAS  Google Scholar 

  3. Shahriari M, Jafari M, Khalafi M, Ramezani M, Maki M, Soleimani FH et al (2018) Pre-and post-birth causes of acute lymphoblastic leukemia. Int J Cancer Manag. https://doi.org/10.5812/ijcm.66448

    Article  Google Scholar 

  4. Valihrach L, Androvic P, Kubista M (2020) Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med 72:100825

    Article  CAS  Google Scholar 

  5. Marrugo-Ramírez J, Mir M, Samitier J (2018) Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci 19(10):2877

    Article  Google Scholar 

  6. Ruhen O, Meehan K (2019) Tumor-derived extracellular vesicles as a novel source of protein biomarkers for cancer diagnosis and monitoring. Proteomics 19(1–2):1800155

    Article  Google Scholar 

  7. Colmenares R, Álvarez N, Barrio S, Martínez-López J, Ayala R (2022) The minimal residual disease using liquid biopsies in hematological malignancies. Cancers 14(5):1310

    Article  CAS  Google Scholar 

  8. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  Google Scholar 

  9. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D et al (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer. Int J Oncol 41(6):1897–1912

    Article  CAS  Google Scholar 

  10. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  Google Scholar 

  11. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3(11):e3694

    Article  Google Scholar 

  12. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 7(3):e30679

    Article  CAS  Google Scholar 

  13. Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  Google Scholar 

  14. Derakhshan Z, Khamisipour G, Soleimani FH, Motamed N (2022) Serum MicroRNAs: -28-3p, -31-5p, -378a-3p, and -382-5p as novel potential biomarkers in acute lymphoblastic leukemia. Gene Rep 27:101582

    Article  CAS  Google Scholar 

  15. Elhamamsy AR, El Sharkawy MS, Zanaty AF, Mahrous MA, Mohamed AE, Abushaaban EA (2017) Circulating miR-92a, miR-143 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. Int J Mol Cell Med 6(2):77

    Google Scholar 

  16. Song SJ, Pandolfi PP (2014) miR-22 in tumorigenesis. Cell Cycle 13(1):11–22

    Article  CAS  Google Scholar 

  17. Manfè V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM et al (2012) miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS ONE 7(1):e29541

    Article  Google Scholar 

  18. Yan J, Wu G, Chen J, Xiong L, Chen G, Li P (2018) Downregulated miR-217 expression predicts a poor outcome in acute myeloid leukemia. Cancer Biomark 22(1):73–78

    Article  CAS  Google Scholar 

  19. Liu H, Liu Y, Bian Z, Zhang J, Zhang R, Chen X et al (2018) Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 Kip1 axis. Mol Cancer 17(1):1–15

    Article  Google Scholar 

  20. GuruMurthy GS, Atallah E (2022) Relapsed/refractory acute lymphoblastic leukemia in adults: progress and challenges. JCO Oncol Pract

  21. Montaño A, Forero-Castro M, Marchena-Mendoza D, Benito R, Hernández-Rivas JM (2018) New challenges in targeting signaling pathways in acute lymphoblastic leukemia by NGS approaches: an update. Cancers 10(4):110

    Article  Google Scholar 

  22. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(suppl_1):D98–D104

    Article  CAS  Google Scholar 

  23. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162

    Article  CAS  Google Scholar 

  24. http://mirwalk.umm.uni-heidelberg.de/

  25. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T et al (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(11):W460–W466

    Article  CAS  Google Scholar 

  26. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(W1):W169–W173

    Article  Google Scholar 

  27. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

    Article  Google Scholar 

  28. Asaga S, Hoon DS (2013) Direct serum assay for microRNA in cancer patients. Circulating MicroRNAs. Springer, New York, pp 147–155

    Google Scholar 

  29. Zhao Q, Deng S, Wang G, Liu C, Meng L, Qiao S et al (2016) A direct quantification method for measuring plasma MicroRNAs identified potential biomarkers for detecting metastatic breast cancer. Oncotarget 7(16):21865

    Article  Google Scholar 

  30. Kang K, Peng X, Luo J, Gou D (2012) Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. J Anim Sci Biotechnol 3(1):1–9

    Article  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  32. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14(5):844–852

    Article  CAS  Google Scholar 

  33. Schwarzenbach H, Da Silva AM, Calin G, Pantel K (2015) Data normalization strategies for microRNA quantification. Clin Chem 61(11):1333–1342

    Article  CAS  Google Scholar 

  34. Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR et al (2012) Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 133(11–12):675–685

    Article  CAS  Google Scholar 

  35. Bongiovanni D, Saccomani V, Piovan E (2017) Aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Int J Mol Sci 18(9):1904

    Article  Google Scholar 

  36. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27(34):5848

    Article  CAS  Google Scholar 

  37. Marco MD, Ramassone A, Pagotto S, Anastasiadou E, Veronese A, Visone R (2018) MicroRNAs in autoimmunity and hematological malignancies. Int J Mol Sci 19(10):3139

    Article  Google Scholar 

  38. Friedman JM, Jones PA (2009) MicroRNAs: critical mediators of differentiation, development and disease. Swiss Med Wkly 139(33–34):466

    CAS  Google Scholar 

  39. Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q (2018) Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett 428:90–103

    Article  CAS  Google Scholar 

  40. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141(5):672–675

    Article  Google Scholar 

  41. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4):462–469

    Article  CAS  Google Scholar 

  42. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  Google Scholar 

  43. Bar N, Dikstein R (2010) miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS ONE 5(5):e10859

    Article  Google Scholar 

  44. Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM et al (2013) The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 13(1):87–101

    Article  CAS  Google Scholar 

  45. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y et al (2009) High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114(3):647–650

    Article  CAS  Google Scholar 

  46. Li Z, Cai X, Cai C-L, Wang J, Zhang W, Petersen BE et al (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118(17):4509–4518

    Article  CAS  Google Scholar 

  47. Jiang X, Hu C, Arnovitz S, Bugno J, Yu M, Zuo Z et al (2016) miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun 7(1):1–15

    Article  Google Scholar 

  48. Chiaretti S, Zini G, Bassan R (2014) Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis 6(1):e2014073

    Article  Google Scholar 

  49. Saccomani V, Grassi A, Piovan E, Bongiovanni D, Di Martino L, Minuzzo S et al (2020) miR-22-3p negatively affects tumor progression in T-cell acute lymphoblastic leukemia. Cells 9(7):1726

    Article  CAS  Google Scholar 

  50. Qu H, Zheng G, Cheng S, Xie W, Liu X, Tao Y et al (2020) Serum miR-22 is a novel prognostic marker for acute myeloid leukemia. J Clin Lab Anal 34(9):e23370

    Article  CAS  Google Scholar 

  51. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S et al (2009) MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Can Res 69(14):5761–5767

    Article  CAS  Google Scholar 

  52. Yang J, Yuan Y, Yang X, Hong Z, Yang L (2017) Decreased expression of microRNA-122 is associated with an unfavorable prognosis in childhood acute myeloid leukemia and function analysis indicates a therapeutic potential. Pathol-Res Pract 213(9):1166–1172

    Article  CAS  Google Scholar 

  53. Zhang Y, Huang H, Zhang Y, Liao N (2019) Combined detection of serum MiR-221-3p and MiR-122-5p expression in diagnosis and prognosis of gastric cancer. J Gastric Cancer 19(3):315–328

    Article  Google Scholar 

  54. Hirano D, Hayakawa F, Yasuda T, Tange N, Yamamoto H, Kojima Y et al (2019) Chromosomal translocation-mediated evasion from miRNA induces strong MEF2D fusion protein expression, causing inhibition of PAX5 transcriptional activity. Oncogene 38(13):2263–2274

    Article  CAS  Google Scholar 

  55. Zhang N, Lu C, Chen L (2016) miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer. Oncol Lett 12(6):4589–4597

    Article  CAS  Google Scholar 

  56. Lin Y, Cheng K, Wang T, Xie Q, Chen M, Chen Q et al (2017) miR-217 inhibits proliferation, migration, and invasion via targeting AKT3 in thyroid cancer. Biomed Pharmacother 95:1718–1724

    Article  CAS  Google Scholar 

  57. Zhu Y, Zhao H, Feng L, Xu S (2016) MicroRNA-217 inhibits cell proliferation and invasion by targeting Runx2 in human glioma. Am J Transl Res 8(3):1482

    CAS  Google Scholar 

  58. Su J, Wang Q, Liu Y, Zhong M (2014) miR-217 inhibits invasion of hepatocellular carcinoma cells through direct suppression of E2F3. Mol Cell Biochem 392(1):289–296

    Article  CAS  Google Scholar 

  59. Zhao W-G, Yu S-N, Lu Z-H, Ma Y-H, Gu Y-M, Chen J (2010) The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31(10):1726–1733

    Article  CAS  Google Scholar 

  60. de Yébenes VG, Bartolomé-Izquierdo N, Nogales-Cadenas R, Pérez-Durán P, Mur SM, Martínez N et al (2014) miR-217 is an oncogene that enhances the germinal center reaction. Blood 124(2):229–239

    Article  Google Scholar 

  61. Zhang Z, Xiang D, Heriyanto F, Gao Y, Qian Z, Wu W-S (2013) Dissecting the roles of miR-302/367 cluster in cellular reprogramming using TALE-based repressor and TALEN. Stem Cell Rep 1(3):218–225

    Article  CAS  Google Scholar 

  62. Kaid C, Silva PB, Cortez BA, Rodini CO, Semedo-Kuriki P, Okamoto OK (2015) miR-367 promotes proliferation and stem-like traits in medulloblastoma cells. Cancer Sci 106(9):1188–1195

    Article  CAS  Google Scholar 

  63. Wang G-C, He Q-Y, Tong D-K, Wang C-F, Liu K, Ding C et al (2016) MiR-367 negatively regulates apoptosis induced by adriamycin in osteosarcoma cells by targeting KLF4. J Bone Oncol 5(2):51–56

    Article  Google Scholar 

  64. Bin Z, Dedong H, Xiangjie F, Hongwei X, Qinghui Y (2015) The microRNA-367 inhibits the invasion and metastasis of gastric cancer by directly repressing Rab23. Genet Test Mol Biomarkers 19(2):69–74

    Article  CAS  Google Scholar 

  65. Sun H, Feng X (2020) MicroRNA-367 directly targets PIK3R3 to inhibit proliferation and invasion of oral carcinoma cells. Biosci Rep. https://doi.org/10.1042/BSR20193867

Download references

Acknowledgements

The authors would like to gratefully thank Ms. Elham Mohseni Nasab for her assistance in collecting patient's samples. This work was based on the Research Project No. 844, as the Master dissertation of Fatemeh Hosseinpour-Soleimani, financed by the Research Council of Bushehr University of Medical Sciences, Bushehr, Iran.

Funding

The present research was supported by an MSc grant provided by Bushehr University of Medical Sciences, Bushehr, Iran (project number: 844). The results presented in this publication are part of the Master dissertation of Fatemeh Hosseinpour-Soleimani.

Author information

Authors and Affiliations

Authors

Contributions

F-HS: Performed material preparation and all experiments, analyzed the data and wrote the initial draft of the manuscript. Z-D and B-A: Contributed to bioinformatics analysis and revised the manuscript. Gh-Kh: Contributed to concept and design, financial support, and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gholamreza Khamisipour.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest relevant to this article.

Ethical Approval

The study protocol was approved by the Medical Ethics Committee of Bushehr University of Medical Sciences, Bushehr, Iran (no. IR.BPUMS.REC.1397.059, approved October 22, 2019) and all tests were performed according to the relevant guidelines and comply with the Declaration of Helsinki. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinpour-Soleimani, F., Khamisipour, G., Derakhshan, Z. et al. Expression analysis of circulating miR-22, miR-122, miR-217 and miR-367 as promising biomarkers of acute lymphoblastic leukemia. Mol Biol Rep 50, 255–265 (2023). https://doi.org/10.1007/s11033-022-08016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08016-6

Keywords

Navigation