Skip to main content

Advertisement

Log in

Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydrogel components were used for this.

Methods

Hydrogels networks were created using chitosan 2% (CTS 2%), carboxymethyl chitosan 2% (CMC 2%), and 50:50 mixtures of CTS and CMC (CTS/CMC 50:50). Furthermore, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), degradation, and swelling behavior of design hydrogels were studied. Also, the cytocompatibility and osteo-differentiation potency were examined by encapsulating mesenchymal stem cells derived from adipose tissue (AMSCs) on the designed hydrogels.

Results

According to the findings, our results showed an acceptable pore structure, functional groups, and degradation rate of the designed hydrogels for in vitro evaluation. In addition, employing CMC instead of CTS or adding 50% CMC to the hydrogel component could improve the hydrogel's osteo-bioactivity without the use of external osteogenic differentiation agents.

Conclusion

The CMC-containing hydrogel not only caused early osteogenesis but also accelerated differentiation to the maturity phase of osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

They are available on the request.

References:

  1. Fares MM, Sani ES, Lara RP, Oliveira RB, Khademhosseini A, Annabi N (2018) Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci 6(11):2938–2950

    Article  CAS  PubMed  Google Scholar 

  2. Chang S, Liu Z, Wang X (2022) Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering. Gels 8:389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghalei S, Handa H (2021) Nitric oxide-releasing gelatin methacryloyl/silk fibroin interpenetrating polymer network hydrogels for tissue engineering applications. ACS Biomater Sci Eng 8(1):273–283

    Article  PubMed  Google Scholar 

  4. Zou Z, Wang L, Zhou Z, Sun Q, Liu D, Chen Y, Zou X et al (2021) Simultaneous incorporation of PTH (1–34) and nano-hydroxyapatite into chitosan/alginate hydrogels for efficient bone regeneration. Bioactive Mater 6(6):1839–1851

    Article  CAS  Google Scholar 

  5. Nie J, Pei B, Wang Z, Hu Q (2019) Construction of ordered structure in polysaccharide hydrogel: a review. Carbohydr Polym 205:225–235

    Article  CAS  PubMed  Google Scholar 

  6. Nie H, Liu M, Zhan F, Guo M (2004) Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydr Polym 58(2):185–189

    Article  CAS  Google Scholar 

  7. Dutta SD, Hexiu J, Patel DK, Ganguly K, Lim KT (2021) 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol 167:644–658

    Article  CAS  PubMed  Google Scholar 

  8. Sharifi F et al (2018) Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol 115:243–248

    Article  CAS  PubMed  Google Scholar 

  9. Tang Y, Du Y, Li Y, Wang X, Hu X (2009) A thermosensitive chitosan/poly (vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery. J Biomed Mater Res Part A 91(4):953–963

    Article  Google Scholar 

  10. Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi KP, Ehrlich H, Jayakumar R et al (2014) Chitin and chitosan in selected biomedical applications. Progr Polym Sci 39(9):1644–1667

    Article  CAS  Google Scholar 

  11. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  PubMed  Google Scholar 

  12. No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74(1–2):65–72

    Article  CAS  PubMed  Google Scholar 

  13. Li Q, Dunn ET, Grandmaison EW, Goosen MF (2020) Applications and properties of chitosan. In: Goosen MFA (ed) Applications of chitin and chitosan. Boca Raton, CRC Press, pp 3–29

    Chapter  Google Scholar 

  14. Tsai GJ, Su WH (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot 62(3):239–243

    Article  CAS  PubMed  Google Scholar 

  15. Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2(33):5319–5338

    Article  CAS  PubMed  Google Scholar 

  16. Ji X, Yang W, Wang T, Mao C, Guo L, Xiao J, He N (2013) Coaxially electrospun core/shell structured poly (l-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. J Biomed Nanotechnol 9(10):1672–1678

    Article  CAS  PubMed  Google Scholar 

  17. Wu T, Huang J, Jiang Y, Hu Y, Ye X, Liu D, Chen J (2018) Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem 240:361–369

    Article  CAS  PubMed  Google Scholar 

  18. Zhong QK, Wu ZY, Qin YQ, Hu Z, Li SD, Yang ZM, Li PW (2019) Preparation and properties of carboxymethyl chitosan/alginate/tranexamic acid composite films. Membranes 9(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alemi PS et al (2019) Synergistic effect of pressure cold atmospheric plasma and carboxymethyl chitosan to mesenchymal stem cell differentiation on PCL/CMC nanofibers for cartilage tissue engineering. Polym Adv Technol 30:1356

    Article  CAS  Google Scholar 

  20. Wach RA, Mitomo H, Yoshii F, Kumo T (2001) Hydrogel of biodegradation cellulose derivatives. II. Effect of some factors on radation-induced crosslinking of CMC. J Appl Polym Sci 81:3000–3017

    Article  Google Scholar 

  21. Tao F, Cheng Y, Tao H, Jin L, Wan Z, Dai F, Deng H et al (2020) Carboxymethyl chitosan/sodium alginate-based micron-fibers fabricated by emulsion electrospinning for periosteal tissue engineering. Mater Design 194:108849

    Article  CAS  Google Scholar 

  22. Sharifi F, Atyabi SM, Irani S, Bakhshi H (2020) Bone morphogenic protein-2 immobilization by cold atmospheric plasma to enhance the osteoinductivity of carboxymethyl chitosan-based nanofibers. Carbohydr Polym 231:115681

    Article  CAS  PubMed  Google Scholar 

  23. Arab-Ahmadi S, Irani S, Bakhshi H, Atyabi F, Ghalandari B (2021) Immobilization of carboxymethyl chitosan/laponite on polycaprolactone nanofibers as osteoinductive bone scaffolds. Polym Adv Technol 32(2):755–765

    Article  CAS  Google Scholar 

  24. Arab-Ahmadi S, Irani S, Bakhshi H, Atyabi F, Ghalandari B (2021) Immobilization of cobalt-loaded laponite/carboxymethyl chitosan on polycaprolactone nanofiber for improving osteogenesis and angiogenesis activities. Polym Adv Technol 32:4362

    Article  CAS  Google Scholar 

  25. Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11):2370–2379

    Article  CAS  PubMed  Google Scholar 

  26. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    Google Scholar 

  27. Zhong C, Chu CC (2012) Biomimetic mineralization of acid polysaccharide-based hydrogels: towards porous 3-dimensional bone-like biocomposites. J Mater Chem B 22(13):6080–6087

    Article  CAS  Google Scholar 

  28. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):45

    Article  Google Scholar 

  29. Mohammadnezhad J, Bakhshi H et al (2016) Preparation and evaluation of chitosan-coated eggshell particles as copper(II) biosorbent. Desalin Water Treatment 57:1693–1704

    Article  CAS  Google Scholar 

  30. Ray M, Anis A, Banthia AK (2010) Development and characterization of chitosan based polymeric hydrogel membranes. Des Monomers Polym 13:193–206

    Article  CAS  Google Scholar 

  31. Hassani F, Ebrahimi B, Moini A, Ghiaseddin A, Bazrafkan M, Hassanzadeh G, Valojerdi MR (2020) Chitosan hydrogel supports integrity of ovarian follicles during in vitro culture: a preliminary of a novel biomaterial for three dimensional culture of ovarian follicles. Cell J (Yakhteh) 21(4):193

    Google Scholar 

  32. Yar M, Gigliobianco G, Shahzadi L, Dew L, Siddiqi SA, Khan AF, MacNeil S et al (2016) Production of chitosan PVA PCL hydrogels to bind heparin and induce angiogenesis. Int J Polym Mater Polym Biomater 65(9):466–476

    Article  CAS  Google Scholar 

  33. Sharifi F, Irani S, Azadegan G, Pezeshki-Modaress M, Zandi M, Saeed M (2020) Co-electrospun gelatin-chondroitin sulfate/polycaprolactone nanofibrous scaffolds for cartilage tissue engineering. Bioactive Carbohydr Dietary Fibre 22:100215

    Article  CAS  Google Scholar 

  34. Rusdianto Budiraharjo KGN (2012) Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. J Colloid Interface Sci 366:224–232

    Article  PubMed  Google Scholar 

  35. Upadhyaya L, Agarwal V, Tewari RP (2014) The im plications of recent advances in carboxym eth yl chitosan based targeted drug delivery an d tissu e engin eering applicat ions. J Controlled Release 186:54–87

    Article  CAS  Google Scholar 

  36. Neuss S et al (2008) Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 29(3):302–313

    Article  CAS  PubMed  Google Scholar 

  37. Siddiqui N, Jabbari E (2015) Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin. Mater Sci Eng C 54:76–83

    Article  CAS  Google Scholar 

  38. Zaharia A, Muşat V, Anghel EM, Atkinson I, Mocioiu OC, Buşilă M, Pleşcan VG (2017) Biomimetic chitosan-hydroxyapatite hybrid biocoatings for enamel remineralization. Ceram Int 43:11390–11402

    Article  CAS  Google Scholar 

  39. Salama A (2018) Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release. Int J Biol Macromol 108:471–476

    Article  CAS  PubMed  Google Scholar 

  40. Liang H, Sheng F, Zhou B, Pei Y, Li B, Li J (2017) Phosphoprotein/chitosan electrospun nanofibrous scaffold for biomineralization. Int J Biol Macromol 102:218–224

    Article  CAS  PubMed  Google Scholar 

  41. Douglas TE, Skwarczynska A, Modrzejewska Z, Balcaen L, Schaubroeck D, Lycke S, Leeuwenburgh SC (2013) Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase. Int J Biol Macromol 56:122–132

    Article  CAS  PubMed  Google Scholar 

  42. Li N, Zhou L, Xie W, Zeng D, Cai D, Wang H, Li L et al (2019) Alkaline phosphatase enzyme-induced biomineralization of chitosan scaffolds with enhanced osteogenesis for bone tissue engineering. Chem Eng J 371:618–630

    Article  CAS  Google Scholar 

  43. Orafa Z, Irani S, Zamanian A, Bakhshi H, Nikukar H, Ghalandari B (2021) Evaluation of biocompatibility of PLA scaffold coated with laponite on human bone marrow mesenchymal stem cells. J Anim Biol 13(4):101–117

    Google Scholar 

  44. Fu C, Yang X, Tan S, Song L (2017) Enhancing cell proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene oxide-incorporated PLGA/HA biodegradable microcarriers. Sci Rep 7(1):1–13

    Article  Google Scholar 

  45. Kim JA, Yun HS, Choi YA, Kim JE, Choi SY, Kwon TG, Park EK (2018) Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 157:51–61

    Article  CAS  PubMed  Google Scholar 

  46. Roberts S, Narisawa S, Harmey D, Millán JL, Farquharson C (2007) Functional involvement of PHOSPHO1 in matrix vesicle–mediated skeletal mineralization. J Bone Miner Res 22(4):617–627

    Article  CAS  PubMed  Google Scholar 

  47. Rader BA (2017) Alkaline phosphatase, an unconventional immune protein. Front Immunol. https://doi.org/10.3389/fimmu.2017.00897

    Article  PubMed  PubMed Central  Google Scholar 

  48. Favarin BZ, Andrade MAR, Bolean M, Simão AMS, Ramos AP, Hoylaerts MF, Millán JL, Ciancaglini P (2017) Effect of the presence of cholesterol in the interfacial microenvironment on the modulation of the alkaline phosphatase activity during in vitro mineralization. Colloids Surf B 155:466–476

    Article  CAS  Google Scholar 

  49. Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, MansooriMoghadam Z (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol 114:1203–1215

    Article  CAS  PubMed  Google Scholar 

  50. Domingos M, Gloria A, Gristina R, Ambrosio L, Bártolo PJ, Favia P, Uovo F, Gloria A, Gristina R, Ambrosio L, Bártolo PJ, Favia P (2013) Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomater 9(4):5997–6005

    Article  CAS  PubMed  Google Scholar 

  51. Marolt D, Vunjak-Novakovic G (2010) Bone tissue engineering with human stem cells. Stem Cell Res Therapy. 1(2):10

    Article  Google Scholar 

  52. Moghadam FH, Dehghan M, Eslami G, Nadri H, Moradi A, Vahedian-Ardakani H, Barzegar K (2014) Differentiation of bone marrow mesenchymal stem cells into chondrocytes after short term culture in alkaline medium. Int J Hematol-Oncol Stem Cell Res 8(4):12

    PubMed  PubMed Central  Google Scholar 

  53. Birmingham E, Niebur G, McHugh P (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 23:13–27

    Article  CAS  PubMed  Google Scholar 

  54. Shi Z, Neoh K, Kang E, Poh CK, Wang W (2009) Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromol 10:1603–1611

    Article  CAS  Google Scholar 

  55. Baratta JL, Ngo A, Lopez B, Kasabwalla N, Longmuir KJ, Robertson RT (2009) Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis. Histochem Cell Biol 131(6):713–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anne Neumann AC (2013) BMP2-loaded nanoporous silica nanoparticles promote osteogenic differentiation of human mesenchymal stem cells. RSC Adv 3:24222–24230

    Article  Google Scholar 

  57. Gamblin A-L et al (2014) Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: the local implication of osteoclasts and macrophages. Biomaterials 35(36):9660–9667

    Article  CAS  PubMed  Google Scholar 

  58. Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC (2020) Collagen type I and II blend hydrogel with autologous mesenchymal stem cells as a scaffold for articular cartilage defect repair. ACS Biomater Sci Eng 6(6):3464–3476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiva Irani or Mohammadreza Gholami.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2550 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, F., Hasani, M., Atyabi, S.M. et al. Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation. Mol Biol Rep 49, 12063–12075 (2022). https://doi.org/10.1007/s11033-022-08013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08013-9

Keywords

Navigation