Skip to main content
Log in

The expression of Oct3/4A mRNA and not its isoforms is upregulated by the HPV16 E7 oncoprotein

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose

Oct3/4 a transcription factor is involved in maintaining the characteristics of cancer stem cells. Oct3/4 can be expressed differentially with respect to the progression of cervical cancer (CC). In addition, Oct3/4 can give rise to three isoforms by alternative splicing of the mRNA Oct3/4A, Oct3/4B and Oct3/4B1. The aim of this study was to evaluate the mRNA expression from Oct3/4A, Oct3/4B and Oct3/4B1 in low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), CC samples, and measure the effect of the HPV16 E7 oncoprotein on the mRNA expression from Oct3/4 isoforms in the C-33A cell line.

Methods

The expression levels of Oct3/4A, Oct3/4B and Oct3/4B1 mRNA were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in patients with LSILs, HSILs and CC. Additionally, C-33A cells that expressed the HPV16 E7 oncoprotein were established to evaluate the effect of E7 on the expression of Oct3/4 mRNA isoforms.

Results

Oct3/4A (p = 0.02), Oct3/4B (p = 0. 001) and Oct3/4B1 (p < 0. 0001) expression is significantly higher in patients with LSIL, HSIL and CC than in woman with non-IL. In the C-33A cell line, the expression of Oct3/4A mRNA in the presence of the E7 oncoprotein increased compared to that in nontransfected C-33A cells.

Conclusion

Oct3/4B and Oct3/4B1 mRNA were expressed at similar levels among the different groups. These data indicate that only the mRNA of Oct3/4A is upregulated by the HPV16 E7 oncoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. GLOBOCAN GLOBOCAN (IARC) (2020) Available online at: https://gco.iarc.fr/ [accessed June 1, 2020]

  2. American Cancer Society (2020) Available online at: https://www.cancer.org/ [accessed November 1, 2020]

  3. World Health Organization (2014) Comprehensive cervical cancer control: a guide to essential practice, [Accessed Oct, 2020]; Available at: https://www.ncbi.nlm.nih.gov/books/NBK269619/. 2nd edition ed

  4. Lin J, Albers AE, Qin J, Kaufmann AM (2014) Prognostic significance of overexpressed p16INK4a in patients with cervical cancer: a meta-analysis. PLoS ONE 9(9):e106384. https://doi.org/10.1371/journal.pone.0106384

    Article  CAS  Google Scholar 

  5. Wise-Draper TM, Wells SI (2008) Papillomavirus E6 and E7 proteins and their cellular targets. Front Biosci 13:1003–1017. https://doi.org/10.2741/2739

    Article  CAS  Google Scholar 

  6. Roman A, Munger K (2013) The papillomavirus E7 proteins. Virology 445(1–2):138–168. https://doi.org/10.1016/j.virol.2013.04.013

    Article  CAS  Google Scholar 

  7. Alberti L, Losi L, Leyvraz S, Benhattar J (2015) Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells. PLoS ONE 10(7):e0132977. https://doi.org/10.1371/journal.pone.0132977

    Article  CAS  Google Scholar 

  8. Li S-W, Wu X-L, Dong C-L, Xie X-Y, Wu J-F, Zhang X (2015) The Differential Expression of OCT4 Isoforms in Cervical Carcinoma. PLoS ONE 10(3):e0118033. https://doi.org/10.1371/journal.pone.0118033

    Article  CAS  Google Scholar 

  9. Wang YD, Cai N, Wu XL, Cao HZ, Xie LL, Zheng PS (2013) OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis 4(8):e760. https://doi.org/10.1038/cddis.2013.272

    Article  CAS  Google Scholar 

  10. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  Google Scholar 

  11. Wang X, Dai J (2010) Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 28(5):885–893. https://doi.org/10.1002/stem.419

    Article  CAS  Google Scholar 

  12. Villodre ES, Kipper FC, Pereira MB, Lenz G (2016) Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev 51(1):1–9. https://doi.org/10.1016/j.ctrv.2016.10.003

    Article  CAS  Google Scholar 

  13. Liu D, Zhou P, Zhang L, Wu G, Zheng Y, He F (2011) Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A. Tumour Biol 32(5):941–950. https://doi.org/10.1007/s13277-011-0196-z

    Article  CAS  Google Scholar 

  14. Organista-Nava J, Gómez-Gómez Y, Ocadiz-Delgado R, García-Villa E, Bonilla-Delgado J, Lagunas-Martínez A et al (2016) The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology 499(1):230–242. https://doi.org/10.1016/j.virol.2016.09.020

    Article  CAS  Google Scholar 

  15. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  Google Scholar 

  16. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.cd-12-0095

    Article  Google Scholar 

  17. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–w102. https://doi.org/10.1093/nar/gkx247

    Article  CAS  Google Scholar 

  18. Zhai Y, Kuick R, Nan B, Ota I, Weiss SJ, Trimble CL et al (2007) Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res 67(21):10163–10172. https://doi.org/10.1158/0008-5472.can-07-2056

    Article  CAS  Google Scholar 

  19. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41(1):D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  Google Scholar 

  20. Alarcón-Romero LDC, Organista-Nava J, Gómez-Gómez Y, Ortiz-Ortiz J, Hernández-Sotelo D, Del Moral-Hernández O et al (2022) Prevalence and Distribution of Human Papillomavirus Genotypes (1997–2019) and Their Association With Cervical Cancer and Precursor Lesions in Women From Southern Mexico. Cancer Control 29:1–21. https://doi.org/10.1177/10732748221103331

    Article  Google Scholar 

  21. Leornard D, Michael K, James B. Basic methods in molecular biology1994

  22. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582. https://doi.org/10.1038/nprot.2006.236

    Article  CAS  Google Scholar 

  23. Asadi MH, Mowla SJ, Fathi F, Aleyasin A, Asadzadeh J, Atlasi Y (2011) OCT4B1, a novel spliced variant of OCT4, is highly expressed in gastric cancer and acts as an antiapoptotic factor. Int J Cancer 128(11):2645–2652. https://doi.org/10.1002/ijc.25643

    Article  CAS  Google Scholar 

  24. Aguilar-Lemarroy A, Gariglio P, Whitaker NJ, Eichhorst ST, zur Hausen H, Krammer PH et al (2002) Restoration of p53 expression sensitizes human papillomavirus type 16 immortalized human keratinocytes to CD95-mediated apoptosis. Oncogene 21(2):165–175. https://doi.org/10.1038/sj.onc.1204979

    Article  CAS  Google Scholar 

  25. Xu S, Sui S, Zhang J, Bai N, Shi Q, Zhang G et al (2015) Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int J Clin Exp Pathol 8(5):4881–4891

    Google Scholar 

  26. Cortés-Malagón EM, Bonilla-Delgado J, Díaz-Chávez J, Hidalgo-Miranda A, Romero-Cordoba S, Uren A et al (2013) Gene expression profile regulated by the HPV16 E7 oncoprotein and estradiol in cervical tissue. Virology 447(1–2):155–165. https://doi.org/10.1016/j.virol.2013.08.036

    Article  CAS  Google Scholar 

  27. Kim BW, Cho H, Choi CH, Ylaya K, Chung JY, Kim JH et al (2015) Clinical significance of OCT4 and SOX2 protein expression in cervical cancer. BMC Cancer 15(1):1015. https://doi.org/10.1186/s12885-015-2015-1

    Article  CAS  Google Scholar 

  28. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444. https://doi.org/10.1158/0008-5472.can-10-2638

    Article  CAS  Google Scholar 

  29. Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68(16):6533–6540. https://doi.org/10.1158/0008-5472.can-07-6642

    Article  CAS  Google Scholar 

  30. Panayiotou T, Michael S, Zaravinos A, Demirag E, Achilleos C, Strati K (2020) Human papillomavirus E7 binds Oct4 and regulates its activity in HPV-associated cervical cancers. PLoS Pathog 16(4):e1008468. https://doi.org/10.1371/journal.ppat.1008468

    Article  CAS  Google Scholar 

  31. Brehm A, Ohbo K, Zwerschke W, Botquin V, Jansen-Dürr P, Schöler HR (1999) Synergism with germ line transcription factor Oct-4: viral oncoproteins share the ability to mimic a stem cell-specific activity. Mol Cell Biol 19(4):2635–2643. https://doi.org/10.1128/mcb.19.4.2635

    Article  CAS  Google Scholar 

  32. da Silva PBG, Teixeira Dos Santos MC, Rodini CO, Kaid C, Pereira MCL, Furukawa G et al (2017) High OCT4A levels drive tumorigenicity and metastatic potential of medulloblastoma cells. Oncotarget 8(12):19192–19204. https://doi.org/10.18632/oncotarget.15163

    Article  Google Scholar 

  33. Gariglio P, Organista-Nava J, Alvarez-Rios E (2016) Role of HR-HPVs E6 and E7 oncoproteins in cervical carcinogenesis. J Mol Genet Med 10(216):1747-0862.1000216. https://doi.org/10.4172/1747-0862.1000216

    Google Scholar 

  34. Kareta MS, Gorges LL, Hafeez S, Benayoun BA, Marro S, Zmoos AF et al (2015) Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell 16(1):39–50. https://doi.org/10.1016/j.stem.2014.10.019

    Article  CAS  Google Scholar 

  35. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E et al (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7(2):165–171. https://doi.org/10.1038/ncb1211

    Article  CAS  Google Scholar 

  36. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S et al (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655. https://doi.org/10.1016/s0092-8674(03)00392-1

    Article  CAS  Google Scholar 

  37. Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS et al (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25(14):6031–6046. https://doi.org/10.1128/mcb.25.14.6031-6046.2005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all of the Instituto Estatal de Cancerología ‘‘Dr. Arturo Beltrán Ortega’’ and Secretaría de Salud personnel who helped with this study at the clinic sites. We also thank technicians of Laboratorio de Biomedicina Molecular for their excellent laboratory assistance.

Funding

The present study was supported by grant from CONACYT, México (Investigación Científica Básica 2016; grant no. 288612).

Author information

Authors and Affiliations

Authors

Contributions

Gómez-Gómez Y: Data collection, Validation, Formal analysis, and Manuscript original draft preparation. Organista-Nava J: Conceptualization, Data collection, Validation, Formal analysis, Project administration, Manuscript writing—review and editing. Clemente-Periván SI: Data collection, Formal analysis, and Manuscript original draft preparation. Lagunas-Martínez A: Data collection. Salmerón-Bárcenas EG: Data collection, and Formal analysis. Villanueva-Morales D: Data collection. Ayala-Reyna DY: Data collection. Alarcón-Romero L del C: Data collection. Ortiz-Ortiz J: Data collection. Bello-Rios C: Data collection. Jiménez-López MA: Data collection. Leyva-Vázquez MA: Data collection. Illades-Aguiar B: Conceptualization, Project administration and Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jorge Organista-Nava or Berenice Illades‑Aguiar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Bioethical Committee of the Universidad Autónoma de Guerrero and Instituto Estatal de Cancerología ‘‘Dr. Arturo Beltrán Ortega’’ (approval no. FO-INV-AUT2018).

Consent to participate

This study was conducted in accordance with the guidelines of the Declaration of Helsinki. Written informed consent was obtained from all participants prior your registration in this study. Data confidentiality was maintained throughout the study.

Consent for publication

All authors consent to the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Gómez, Y., Organista-Nava, J., Clemente-Periván, S.I. et al. The expression of Oct3/4A mRNA and not its isoforms is upregulated by the HPV16 E7 oncoprotein. Mol Biol Rep 50, 981–991 (2023). https://doi.org/10.1007/s11033-022-07988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07988-9

Keywords

Navigation