Skip to main content
Log in

Dihydromyricetin inhibits Hepatitis B virus replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Hepatitis B virus (HBV) infection is a severe global health problem, and there has been no effective method to eliminate HBV. This study was designed to explore the pharmacological mechanism of Dihydromyricetin (DHM) treatment on HBV replication in vitro.

Methods and Results

DHM is a flavonoid compound from Ampelopsis grossedentata. Using HepG2.2.15 cells, which can stably express HBV in vitro, we demonstrated that DHM treatment dramatically reduced HBV replication and secretions of HBsAg and HBeAg. Meanwhile, DHM inhibited mRNA expression of HBV RNAs in HepG2.2.15 cells, including Total HBV RNA, HBV pregenomic RNA (pgRNA), and HBV precore mRNA (pcRNA). Also, DHM elevated the mRNA expressions of inflammatory cytokines and antiviral effectors. In contrast, DHM decreased the mRNA level of HNF4α, which positively correlated with HBV replication. Further studies show that the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway played a critical role in DHM-initiated inhibition of HBV replication in HepG2.2.15 cells. Besides, activated autophagy was another contributor that may accelerate the clearance of HBV components.

Conclusion

In summary, DHM could suppress HBV replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Our studies shed light on the future application of DHM for the clinical treatment of HBV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HBV:

Hepatitis B virus.

DHM:

Dihydromyricetin.

rcDNA:

double-stranded relaxed circular DNA.

cccDNA:

covalently closed circular DNA.

pgRNA:

HBV pregenomic RNA.

pcRNA:

HBV precore mRNA.

NF-κB:

Nuclear factor-kappa B.

MAPK:

Mitogen-activated protein kinase.

IFN:

Interferon.

OAS:

2’,5’-oligoadenylate synthetase.

MxA:

Myxovirus resistance A protein.

PKR:

Protein kinase R.

References

  1. Yang Y, Liu Y, Xue J et al (2017) MicroRNA-141 Targets Sirt1 and Inhibits Autophagy to Reduce HBV Replication. Cell Physiol Biochem 41:310–322. https://doi.org/10.1159/000456162

    Article  CAS  Google Scholar 

  2. Li X, Wu S, Du Y et al (2020) Entecavir therapy reverses gut microbiota dysbiosis induced by hepatitis B virus infection in a mouse model. Int J Antimicrob Agents 56:106000. https://doi.org/10.1016/j.ijantimicag.2020.106000

    Article  CAS  Google Scholar 

  3. Yang H, Zhou Y, Mo J et al (2020) SOX9 represses hepatitis B virus replication through binding to HBV EnhII/Cp and inhibiting the promoter activity. Antiviral Res 177:104761. https://doi.org/10.1016/j.antiviral.2020.104761

    Article  CAS  Google Scholar 

  4. Liu S, Zhou B, Valdes JD et al (2019) Serum Hepatitis B Virus RNA: A New Potential Biomarker for Chronic Hepatitis B Virus Infection. Hepatology 69:1816–1827. https://doi.org/10.1002/hep.30325

    Article  Google Scholar 

  5. Pant K, Yadav AK, Gupta P et al (2016) Humic acid inhibits HBV-induced autophagosome formation and induces apoptosis in HBV-transfected Hep G2 cells. Sci Rep 6:34496. https://doi.org/10.1038/srep34496

    Article  CAS  Google Scholar 

  6. Wu LL, Peng WH, Wu HL et al (2019) Lymphocyte Antigen 6 Complex, Locus C(+) Monocytes and Kupffer Cells Orchestrate Liver Immune Responses Against Hepatitis B Virus in Mice. Hepatology 69:2364–2380. https://doi.org/10.1002/hep.30510

    Article  CAS  Google Scholar 

  7. De Ridder F, Sonneveld MJ, Lenz O et al (2021) Mean HBsAg decline at week 24 of PEG-IFN-based treatment predicts subsequent rate of HBsAg clearance - suggesting a valuable endpoint for early development HBV trials. J Viral Hepat 28:1563–1569. https://doi.org/10.1111/jvh.13599

    Article  CAS  Google Scholar 

  8. Park YK, Lee SY, Lee AR et al (2020) Antiviral activity of interferon-stimulated gene 20, as a putative repressor binding to hepatitis B virus enhancer II and core promoter. J Gastroenterol Hepatol 35:1426–1436. https://doi.org/10.1111/jgh.14986

    Article  CAS  Google Scholar 

  9. Wang YX, Niklasch M, Liu T et al (2020) Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. J Hepatol 72:865–876. https://doi.org/10.1016/j.jhep.2019.12.009

    Article  CAS  Google Scholar 

  10. Sun Z, Lu W, Lin N et al (2020) Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem Pharmacol 175:113888. https://doi.org/10.1016/j.bcp.2020.113888

    Article  CAS  Google Scholar 

  11. Tong H, Zhang X, Tan L et al (2020) Multitarget and promising role of dihydromyricetin in the treatment of metabolic diseases. Eur J Pharmacol 870:172888. https://doi.org/10.1016/j.ejphar.2019.172888

    Article  CAS  Google Scholar 

  12. Liu TT, Zeng Y, Tang K et al (2017) Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis 262:39–50. https://doi.org/10.1016/j.atherosclerosis.2017.05.003

    Article  CAS  Google Scholar 

  13. Li H, Li Q, Liu Z et al (2017) ; 2017: 1053617. https://doi.org/10.1155/2017/1053617

  14. Zhou HY, Gao SQ, Gong YS et al (2020) Anti-HSV-1 effect of dihydromyricetin from Ampelopsis grossedentata via the TLR9-dependent anti-inflammatory pathway. J Glob Antimicrob Resist 23:370–376. https://doi.org/10.1016/j.jgar.2020.10.003

    Article  Google Scholar 

  15. Zhang E, Lu M (2015) Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection. Med Microbiol Immunol 204:11–20. https://doi.org/10.1007/s00430-014-0370-1

    Article  CAS  Google Scholar 

  16. Nguyen MH, Wong G, Gane E et al (2020) Hepatitis B Virus, Advances in Prevention, Diagnosis, and Therapy. Clin Microbiol Reviews 33:e00046–e00019. https://doi.org/10.1128/CMR.00046-19

    Article  Google Scholar 

  17. Yang J, Pi C, Wang G (2018) Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103:699–707. https://doi.org/10.1016/j.biopha.2018.04.072

    Article  CAS  Google Scholar 

  18. Wang H, Liu Y, Wang D et al (2019) The Upstream Pathway of mTOR-Mediated Autophagy in Liver Diseases. Cells 8. https://doi.org/10.3390/cells8121597

  19. Qu B, Brown RJP (2021) Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 13. https://doi.org/10.3390/v13071327

  20. Lai YH, Sun CP, Huang HC et al (2018) Epigallocatechin gallate inhibits hepatitis B virus infection in human liver chimeric mice. BMC Complement Altern Med 18:248. https://doi.org/10.1186/s12906-018-2316-4

    Article  CAS  Google Scholar 

  21. Thongsri P, Pewkliang Y, Borwornpinyo S et al (2021) Curcumin inhibited hepatitis B viral entry through NTCP binding. Sci Rep 11:19125. https://doi.org/10.1038/s41598-021-98243-x

    Article  CAS  Google Scholar 

  22. Bai L, Nong Y, Shi Y et al (2016) Luteolin Inhibits Hepatitis B Virus Replication through Extracellular Signal-Regulated Kinase-Mediated Down-Regulation of Hepatocyte Nuclear Factor 4alpha Expression. Mol Pharm 13:568–577. https://doi.org/10.1021/acs.molpharmaceut.5b00789

    Article  CAS  Google Scholar 

  23. Zhong LH, Zhu LY, Zhao YY et al (2018) Apoptosis of hepatocarcinoma cells Hepg2 induced by Huaier extract through regulation of HBx and CEACAM1 gene expression. J Biol Regul Homeost Agents 32:1389–1398

    CAS  Google Scholar 

  24. Wang B, Zhao XP, Fan YC et al (2013) IL-17A but not IL-22 suppresses the replication of hepatitis B virus mediated by over-expression of MxA and OAS mRNA in the HepG2.2.15 cell line. Antiviral Res 97:285–292. https://doi.org/10.1016/j.antiviral.2012.12.018

    Article  CAS  Google Scholar 

  25. Mueller H, Wildum S, Luangsay S et al (2018) A novel orally available small molecule that inhibits hepatitis B virus expression. J Hepatol 68:412–420. https://doi.org/10.1016/j.jhep.2017.10.014

    Article  CAS  Google Scholar 

  26. Jansen L, Kootstra NA, van Dort KA et al (2016) Hepatitis B Virus Pregenomic RNA Is Present in Virions in Plasma and Is Associated With a Response to Pegylated Interferon Alfa-2a and Nucleos(t)ide Analogues. J Infect Dis 213:224–232. https://doi.org/10.1093/infdis/jiv397

    Article  CAS  Google Scholar 

  27. Kong F, You H, Kong D et al (2019) The interaction of hepatitis B virus with the ubiquitin proteasome system in viral replication and associated pathogenesis. Virol J 16:73. https://doi.org/10.1186/s12985-019-1183-z

    Article  Google Scholar 

  28. Das D, Sengupta I, Sarkar N et al (2017) Anti-hepatitis B virus (HBV) response of imiquimod based toll like receptor 7 ligand in hbv-positive human hepatocelluar carcinoma cell line. BMC Infect Dis 17:76. https://doi.org/10.1186/s12879-017-2189-z

    Article  CAS  Google Scholar 

  29. Wan Y, Cao W, Han T et al (2017) Inducible Rubicon facilitates viral replication by antagonizing interferon production. Cell Mol Immunol 14:607–620. https://doi.org/10.1038/cmi.2017.1

    Article  CAS  Google Scholar 

  30. Pan Y, Ke Z, Ye H et al (2019) Saikosaponin C exerts anti-HBV effects by attenuating HNF1alpha and HNF4alpha expression to suppress HBV pgRNA synthesis. Inflamm Res 68:1025–1034. https://doi.org/10.1007/s00011-019-01284-2

    Article  CAS  Google Scholar 

  31. Boni C, Vecchi A, Rossi M et al (2018) TLR7 Agonist Increases Responses of Hepatitis B Virus-Specific T Cells and Natural Killer Cells in Patients With Chronic Hepatitis B Treated With Nucleos(T)Ide Analogues. Gastroenterology 154:1764–1777e1767. https://doi.org/10.1053/j.gastro.2018.01.030

    Article  CAS  Google Scholar 

  32. Min Y, Lee S, Kim MJ et al (2017) Ubiquitin-Specific Protease 14 Negatively Regulates Toll-Like Receptor 4-Mediated Signaling and Autophagy Induction by Inhibiting Ubiquitination of TAK1-Binding Protein 2 and Beclin 1. Front Immunol 8:1827. https://doi.org/10.3389/fimmu.2017.01827

    Article  CAS  Google Scholar 

  33. Pandey S, Kawai T, Akira S (2015) Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a016246

    Article  Google Scholar 

  34. Wang QQ, Gao H, Yuan R et al (2020) Procyanidin A2, a polyphenolic compound, exerts anti-inflammatory and anti-oxidative activity in lipopolysaccharide-stimulated RAW264.7 cells. PLoS ONE 15:e0237017. https://doi.org/10.1371/journal.pone.0237017

    Article  CAS  Google Scholar 

  35. Wu WKK, Zhang L, Chan MTV, Autophagy NAFLD, NAFLD-Related HCC (2018) Adv Exp Med Biol 1061:127–138. https://doi.org/10.1007/978-981-10-8684-7_10

    Article  CAS  Google Scholar 

  36. Khan M, Imam H, Siddiqui A (2018) Subversion of cellular autophagy during virus infection: Insights from hepatitis B and hepatitis C viruses. Liver Res 2:146–156. https://doi.org/10.1016/j.livres.2018.09.002

    Article  Google Scholar 

  37. Chan ST, Ou JJ, Hepatitis C (2017) Virus-Induced Autophagy and Host Innate Immune Response. Viruses 9. https://doi.org/10.3390/v9080224

  38. Zhou M, Xu W, Wang J et al (2018) Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-kappaB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine 35:345–360. https://doi.org/10.1016/j.ebiom.2018.08.035

    Article  Google Scholar 

  39. Xu Z, Han X, Ou D et al (2020) Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol 104:575–587. https://doi.org/10.1007/s00253-019-10257-8

    Article  CAS  Google Scholar 

  40. Xia J, Guo S, Fang T et al (2014) Dihydromyricetin induces autophagy in HepG2 cells involved in inhibition of mTOR and regulating its upstream pathways. Food Chem Toxicol 66:7–13. https://doi.org/10.1016/j.fct.2014.01.014

    Article  CAS  Google Scholar 

  41. Cao S, Huang Y, Zhang Q et al (2019) Molecular mechanisms of apoptosis and autophagy elicited by combined treatment with oridonin and cetuximab in laryngeal squamous cell carcinoma. Apoptosis 24:33–45. https://doi.org/10.1007/s10495-018-1497-0

    Article  CAS  Google Scholar 

  42. Zhang P, Xin X, Fang L et al (2017) HMGB1 mediates Aspergillus fumigatus-induced inflammatory response in alveolar macrophages of COPD mice via activating MyD88/NF-kappaB and syk/PI3K signalings. Int Immunopharmacol 53:125–132. https://doi.org/10.1016/j.intimp.2017.10.007

    Article  CAS  Google Scholar 

  43. Le Y, Wang Y, Zhou L et al (2020) Cigarette smoke-induced HMGB1 translocation and release contribute to migration and NF-kappaB activation through inducing autophagy in lung macrophages. J Cell Mol Med 24:1319–1331. https://doi.org/10.1111/jcmm.14789

    Article  CAS  Google Scholar 

  44. Man S, Li M, Zhou J et al (2020) Polyethyleneimine coated Fe3O4 magnetic nanoparticles induce autophagy, NF-kappaB and TGF-beta signaling pathway activation in HeLa cervical carcinoma cells via reactive oxygen species generation. Biomater Sci 8:201–211. https://doi.org/10.1039/c9bm01563a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Zhang or Hongtao Liu.

Ethics declarations

Ethical approval:

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, H., Hu, B. et al. Dihydromyricetin inhibits Hepatitis B virus replication by activating NF-κB, MAPKs, and autophagy in HepG2.2.15 cells. Mol Biol Rep 50, 1403–1414 (2023). https://doi.org/10.1007/s11033-022-07971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07971-4

Keywords

Navigation