Skip to main content

Advertisement

Log in

The LncRNA MIAT is identified as a regulator of stemness-associated transcript in glioma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Myocardial infarction-associated transcript (MIAT) is a long non-coding RNA (lncRNA) with altered expression in different diseases and malignancies. In this study, the potential expression and function of lncRNA MIAT in intuition and progression of brain cancer was investigated.

Methods and Results

At first, TCGA data analysis demonstrated that lncRNA MIAT is significantly upregulated in various malignancies, especially its expression is dramatically elevated in brain tumors. In line with the data, we further evaluated the expression of MIAT in a series of brain tumor tissue, and our results revealed that the expression of MIAT was noticeably overexpressed in glioblastoma (p = < 0.0001). We further found that the expression of MIAT was markedly upregulated in low-grade brain tumors rather than high-grade ones. To further investigate the biological function of MIAT in brain cancer cells, its expression was suppressed by si-RNA-mediated knocking down. Inhibition of MIAT resulted in reduced proliferation of brain tumor cells followed by cell cycle arrest at the G1 phase, and significant induction of apoptosis, and senescence, but limited the migration ability and epithelial-mesenchymal-transition (EMT). Moreover, knocking-down of MIAT reduced the expression of stemness factors, followed by upregulation of their downstream miRNAs (micro RNAs), let-7a-5p, and miR-29b-3p.

Conclusions

Altogether, our data demonstrated that lncRNA MIAT could control proliferation, migration, and metastasis of brain cancer cells via regulating the Nanog/ Sox2 / let-7a-5p / miR-29b-3p axis. This data could introduce lncRNA MIAT as a novel oncogene in brain cancer pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhou H-M, Zhang J-G, Zhang X, Li Q (2021) Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 6(1):62. https://doi.org/10.1038/s41392-020-00430-1

    Article  Google Scholar 

  2. Werbowetski-Ogilvie TE (2022) From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma. FEBS J 289(7):1765–1778. https://doi.org/10.1111/febs.15817

    Article  CAS  Google Scholar 

  3. Najafi M, Farhood B, Mortezaee K (2019) Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol 234(6):8381–8395. https://doi.org/10.1002/jcp.27740

    Article  CAS  Google Scholar 

  4. Sun C, Huang L, Li Z, Leng K, Xu Y, Jiang X, Cui Y (2018) Long non-coding RNA MIAT in development and disease: a new player in an old game. J Biomed Sci 25(1):23. https://doi.org/10.1186/s12929-018-0427-3

    Article  CAS  Google Scholar 

  5. Tang Y, Lei W, Chen Y, Wang X, Hamrick MW, Zhou M (2018) Noncoding RNAs and Stem Cell Function and Therapy. Stem Cells Int 2018:7306034–7306034. https://doi.org/10.1155/2018/7306034

    Article  CAS  Google Scholar 

  6. Alipoor FJ, Asadi MH, Torkzadeh-Mahani M (2018) MIAT lncRNA is overexpressed in breast cancer and its inhibition triggers senescence and G1 arrest in MCF7 cell line. J Cell Biochem 119(8):6470–6481

    Article  CAS  Google Scholar 

  7. Rojas Á, Gil-Gómez A, de la Cruz-Ojeda P, Muñoz-Hernández R, Sánchez-Torrijos Y, Gallego-Durán R, Millán R, Rico MC, Montero-Vallejo R, Gato-Zambrano S, Maya-Miles D, Ferrer MT, Muntané J, Robles-Frías MJ, Ampuero J, Padillo FJ, Romero-Gómez M (2022) Long non-coding RNA H19 as a biomarker for hepatocellular carcinoma. Liver Int 42(6):1410–1422. https://doi.org/10.1111/liv.15230

    Article  CAS  Google Scholar 

  8. Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, Shen F (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci 20(22):5573. https://doi.org/10.3390/ijms20225573

    Article  CAS  Google Scholar 

  9. Wang D, Zeng Z, Zhang S, Xiong F, He B, Wu Y, Li W, Tang L, Wei F, Xiang B (2020) Epstein-Barr virus‐encoded miR‐BART6‐3p inhibits cancer cell proliferation through the LOC553103‐STMN1 axis. FASEB J 34(6):8012–8027. doi: https://doi.org/10.1096/fj.202000039RR

    Article  CAS  Google Scholar 

  10. Ouyang J, Zhong Y, Zhang Y, Yang L, Wu P, Hou X, Xiong F, Li X, Zhang S, Gong Z, He Y, Tang Y, Zhang W, Xiang B, Zhou M, Ma J, Li Y, Li G, Zeng Z, Guo C, Xiong W (2022) Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br J Cancer 126(8):1113–1124. https://doi.org/10.1038/s41416-021-01600-w

    Article  CAS  Google Scholar 

  11. Zhou S, Xu A, Song T, Gao F, Sun H, Kong X (2020) lncRNA MIAT Regulates Cell Growth, Migration, and Invasion Through Sponging miR-150-5p in Ovarian Cancer. Cancer Biother Radiopharm 35(9):650–660. https://doi.org/10.1089/cbr.2019.3259

    Article  CAS  Google Scholar 

  12. Li D, Hu X, Yu S, Deng S, Yan M, Sun F, Song J, Tang L (2020) Silence of lncRNA MIAT-mediated inhibition of DLG3 promoter methylation suppresses breast cancer progression via the Hippo signaling pathway. Cell Signal 73:109697. https://doi.org/10.1016/j.cellsig.2020.109697

    Article  CAS  Google Scholar 

  13. Yang Y, Zhang Z, Wu Z, Lin W, Yu M (2019) Downregulation of the expression of the lncRNA MIAT inhibits melanoma migration and invasion through the PI3K/AKT signaling pathway. Cancer Biomark 24(2):203–211. https://doi.org/10.3233/cbm-181869

    Article  CAS  Google Scholar 

  14. Xiang Y, Huang Y, Sun H, Pan Y, Wu M, Zhang J (2019) Deregulation of miR-520d-3p promotes hepatocellular carcinoma development via lncRNA MIAT regulation and EPHA2 signaling activation. Biomed 109:1630–1639. https://doi.org/10.1016/j.biopha.2018.11.014

    Article  CAS  Google Scholar 

  15. Serej ZA, Ebrahimi A, Kazemi T, Najafi S, Amini M, Nastarin P, Baghbani E, Baradaran B (2021) NANOG gene suppression and replacement of let-7 modulate the stemness, invasion, and apoptosis in breast cancer. Gene 801:145844. https://doi.org/10.1016/j.gene.2021.145844

    Article  CAS  Google Scholar 

  16. Zhang J, Ratanasirintrawoot S, Chandrasekaran Z, Wu S, Ficarro C, Yu C, Ross D, Cacchiarelli Q, Xia M, Seligson (2016) LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19:66–80. https://doi.org/10.1016/j.stem.2016.05.009

    Article  CAS  Google Scholar 

  17. Scientific T, Maxima H Minus First Strand cDNA Synthesis Kit with dsDNase

  18. Asadi MH, Yaghoobi MM (2018) Long noncoding RNA VIM-AS1 promotes colorectal cancer progression and metastasis by inducing EMT. Eur J Cell Biol 97(4):279–288. https://doi.org/10.1016/j.ejcb.2018.04.004

    Article  CAS  Google Scholar 

  19. Keshavarz M, Asadi MH (2019) Long non-coding RNA ES 1 controls the proliferation of breast cancer cells by regulating the Oct4/Sox2/miR‐302 axis. FEBS J 286(13):2611–2623

    Article  CAS  Google Scholar 

  20. Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44(D1):D231–D238. https://doi.org/10.1093/nar/gkv1270

    Article  CAS  Google Scholar 

  21. Sacco A, Belloni L, Latella L (2021) From development to aging: the path to cellular senescence. Antioxid Redox Signal 34(4):294–307. https://doi.org/10.1089/ars.2020.8071

    Article  CAS  Google Scholar 

  22. Roth A, Boulay K, Groß M, Polycarpou-Schwarz M, Mallette FA, Regnier M, Bida O, Ginsberg D, Warth A, Schnabel PA (2018) Targeting LINC00673 expression triggers cellular senescence in lung cancer. RNA Biol 15(12):1499–1511. https://doi.org/10.1080/15476286.2018.1553481

    Article  Google Scholar 

  23. Gundamaraju R, Lu W, Paul MK, Jha NK, Gupta PK, Ojha S, Chattopadhyay I, Rao PV, Ghavami S (2022) Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim Biophys Acta Mol Basis Dis 1868(9):166431. https://doi.org/10.1016/j.bbadis.2022.166431

    Article  CAS  Google Scholar 

  24. Si L, Yang Z, Ding L, Zhang D (2022) Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: a new era for cancer treatment. J Cancer Res Clin Oncol 148(3):547–564. https://doi.org/10.1007/s00432-021-03892-0

    Article  Google Scholar 

  25. Wang F, Deng H, Chen J, Wang Z, Yin R (2022) LncRNA MIAT can regulate the proliferation, apoptosis, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting miR-150-5p. Bioengineered 13(3):6343–6352. https://doi.org/10.1080/21655979.2021.2011632

    Article  CAS  Google Scholar 

  26. Jafari-Oliayi A, Asadi MH (2019) SNHG6 is upregulated in primary breast cancers and promotes cell cycle progression in breast cancer-derived cell lines. Cell Oncol 42(2):211–221. https://doi.org/10.1007/s13402-019-00422-6

    Article  CAS  Google Scholar 

  27. Ebrahimi N, Rezanejad H, Asadi MH, Vallian S (2022) LncRNA LOC100507144 acts as a novel regulator of CD44/Nanog/Sox2/miR-302/miR-21 axis in colorectal cancer. BioFactors 48(1):164–180. https://doi.org/10.1002/biof.1813

    Article  CAS  Google Scholar 

  28. Zhang W, Chen Q, Lei C (2020) lncRNA MIAT promotes cell invasion and migration in esophageal cancer. Exp Ther Med 19(5):3267–3274. https://doi.org/10.3892/etm.2020.8588

    Article  CAS  Google Scholar 

  29. Wang L, Lankhorst L, Bernards R (2022) Exploiting senescence for the treatment of cancer. Nat Rev Cancer 22(6):340–355. https://doi.org/10.1038/s41568-022-00450-9

    Article  CAS  Google Scholar 

  30. Pawlowska E, Szczepanska J, Szatkowska M, Blasiak J (2018) An Interplay between Senescence, Apoptosis and Autophagy in Glioblastoma Multiforme—Role in Pathogenesis and Therapeutic Perspective. Int J Mol Sci 19(3). https://doi.org/10.3390/ijms19030889

  31. Duan J-L, Ruan B, Song P, Fang Z-Q, Yue Z-S, Liu J-J, Dou G-R, Han H, Wang L (2022) Shear stress–induced cellular senescence blunts liver regeneration through Notch–sirtuin 1–P21/P16 axis. Hepatol 75(3):584–599. https://doi.org/10.1002/hep.32209

    Article  CAS  Google Scholar 

  32. Bourlon MT, Velazquez HE, Hinojosa J, Orozco L, Rios-Corzo R, Lima G, Llorente L, Hernandez-Ramirez DF, Valentin-Cortez FJ, Medina-Rangel I, Atisha-Fregoso Y (2020) Immunosenescence profile and expression of the aging biomarker (p16(INK4a)) in testicular cancer survivors treated with chemotherapy. BMC Cancer 20(1):882. https://doi.org/10.1186/s12885-020-07383-2

    Article  CAS  Google Scholar 

  33. Fukasawa K, Kadota T, Horie T, Tokumura K, Terada R, Kitaguchi Y, Park G, Ochiai S, Iwahashi S, Okayama Y (2021) CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene 40(15):2803–2815. https://doi.org/10.1038/s41388-021-01745-1

    Article  CAS  Google Scholar 

  34. Liu H, Sun Y, Qi X, Gordon RE, O’Brien JA, Yuan H, Zhang J, Wang Z, Zhang M, Song Y (2019) EZH2 phosphorylation promotes self-renewal of glioma stem-like cells through NF-κB methylation. Front Oncol 9:641. https://doi.org/10.3389/fonc.2019.00641

    Article  Google Scholar 

  35. Dai X-W, Luo W, Lv C-L (2021) lncRNA–MIAT facilitates the differentiation of adipose–derived mesenchymal stem cells into lymphatic endothelial cells via the miR–495/Prox1 axis. Mol Med Rep 23(5):323. https://doi.org/10.3892/mmr.2021.11962

    Article  CAS  Google Scholar 

  36. Almnaseer ZA, Mourtada-Maarabouni M (2018) Long noncoding RNA MIAT regulates apoptosis and the apoptotic response to chemotherapeutic agents in breast cancer cell lines. Biosci Rep 38(4). https://doi.org/10.1042/BSR20180704

  37. Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18(1):5. https://doi.org/10.1038/nrc.2017.99

    Article  CAS  Google Scholar 

  38. Peng F, Li T-T, Wang K-L, Xiao G-Q, Wang J-H, Zhao H-D, Kang Z-J, Fan W-J, Zhu L-L, Li M (2018) H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis 8(1):e2569–e2569. https://doi.org/10.1038/cddis.2016.438

    Article  CAS  Google Scholar 

  39. Peng F, Li T-T, Wang K-L, Xiao G-Q, Wang J-H, Zhao H-D, Kang Z-J, Fan W-J, Zhu L-L, Li M, Cui B, Zheng F-M, Wang H-J, Lam EWF, Wang B, Xu J, Liu Q (2018) H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis 8(1):e2569–e2569. https://doi.org/10.1038/cddis.2016.438

    Article  CAS  Google Scholar 

  40. Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ (2019) Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 8(1):24–24. https://doi.org/10.1186/s40169-019-0240-y

    Article  Google Scholar 

  41. Ma R, Wang M, Gao S, Zhu L, Yu L, Hu D, Zhu L, Huang W, Zhang W, Deng J, Pan J, He H, Gao Z, Xu J, Han X (2020) miR-29a Promotes the Neurite Outgrowth of Rat Neural Stem Cells by Targeting Extracellular Matrix to Repair Brain Injury. Stem Cells Dev 29(9):599–614. https://doi.org/10.1089/scd.2019.0174

    Article  CAS  Google Scholar 

  42. Huang Z, Lu L, Jiang T, Zhang S, Shen Y, Zheng Z, Zhao A, Gao R, Li R, Zhou S, Liu J (2018) miR-29b affects neurocyte apoptosis by targeting MCL-1 during cerebral ischemia/reperfusion injury. Experimental and therapeutic medicine 16(4):3399–3404. https://doi.org/10.3892/etm.2018.6622

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Graduate University of Advanced Technology, Kerman, and the Department of Research of the University of Isfahan, Iran. All biological materials were provided by the IRAN NATIONAL TUMOR BANK, which is funded by the Cancer Institute of Tehran University for Cancer Research.

Funding

This study was supported by the Graduate University of Advanced Technology, Kerman, and Department of Research of the University of Isfahan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Farzane Amirmahani, Sadeq Vallian, and Malek Hossein Asadi. Data analysis was performed by Farzane Amirmahani. The first draft of the manuscript was written by Farzane Amirmahani. Sadeq Vallian, and Malek Hossein Asadi commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sadeq Vallian or Malek Hossein Asadi.

Ethics declarations

Competing Interests

The author(s) declare no competing financial and non-financial interests.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Graduate University of Advanced Technology.

Consent to participate

None.

Consent to publish

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript was submitted to a preprint platform with DOI of https://doi.org/10.21203/rs.3.rs-6 19,425/v1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirmahani, F., Vallian, S. & Asadi, M.H. The LncRNA MIAT is identified as a regulator of stemness-associated transcript in glioma. Mol Biol Rep 50, 517–530 (2023). https://doi.org/10.1007/s11033-022-07962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07962-5

Keywords

Navigation