Skip to main content

Advertisement

Log in

Association of xenobiotic-metabolizing genes polymorphisms with cervical cancer risk in the Tunisian population

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Host genetic characteristics and environmental factors interactions may play a crucial role in cervical carcinogenesis. We investigated the impact of functional genetic variants of four xenobiotic-metabolizing genes (AhR, CYP1A1, GSTM1, and GSTT1) on cervical cancer development in Tunisian women.

Methods

The AhR gene polymorphism was analyzed using the tetra-primer ARMS-PCR, whereas the CYP1A1 polymorphism genotypes were identified by PCR-RFLP. A multiplex ligation-dependent polymerase chain reaction approach was applied for the analysis of GSTM1 and GSTT1 polymorphisms.

Results

The homozygous A/A genotype of the AhR gene (rs2066853) and the heterozygous T/C genotype of the CYP1A1 SNP (CYP1A1-MspI) appeared to be associated with an increased risk of cervical tumorigenesis (ORa = 2.81; ORa = 5.52, respectively). Furthermore, a significantly increased risk of cervical cancer was associated with the GSTT1 null genotype (ORa = 2.65). However, the null GSTM1 genotype showed any significant association with the risk of cervical cancer compared to the wild genotype (ORa = 1.18; p = 0.784). Considering the combined effect, we noted a significantly higher association with cancer risk for individuals with at least two high-risk genotypes of CYP1A1/GSTT1 (ORa = 4.2), individuals with at least two high-risk genotypes of CYP1A1/GSTT1/AhR (ORa = 11.3) and individuals with at least two high-risk genotypes of CYP1A1/GSTM1/GSTT1/AhR exploitation low-risk genotype as a reference.

Conclusion

This study indicated that the single-gene contribution and the combined effect of xenobiotic-metabolizing gene polymorphisms (AhR, CYP1A1-MspI, GSTM1, and GSTT1) may have a considerable association with increased cervical cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

SNP:

Single Nucleotide Polymorphism.

AhR:

Aryl hydrocarbon Receptor.

CYP1A1:

Cytochrome P450 1A1.

GSTM1:

Glutathione S-transferase Mu 1.

GSTT1:

Glutathione S-transferase Theta 1.

TAD:

Transactivation Domain.

TBP:

TATA-binding Protein.

WHO:

World Health Organization.

FIGO:

International Federation of Gynecology and Obstetrics.

SIL:

Squamous Intraepithelial lesion.

LSIL:

Low grade Squamous Intraepithelial lesion.

HSIL:

High grade Squamous Intraepithelial lesion.

ICC:

Invasive Cervical Cancer.

SCC:

Squamous Cell Carcinoma.

AC:

Cervical Adenocarcinoma.

HPV:

Human Papillomavirus.

PAH:

Polycyclic aromatic hydrocarbon.

Pap test:

Papanicolaou test.

PCR:

Polymerase Chain Reaction.

ARMS-PCR:

Amplification Refractory Mutation System.

PCR-RFLP:

PCR-Restriction Fragment Length Polymorphism.

SPSS:

Statistical Package for the Social Sciences.

ORa :

Adjusted Odd Ratio.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. C A Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, PiñerosM, Znaor A, Soerjomataram I, Bray F. Global Cancer Observatory: Cancer Today.Lyon, France: International Agency for Research on Cancer 2020. Available from: https://gco.iarc.fr/today, accessed [05 October 2022].

  3. Sany SB, Hashim R, Rezayi M, Rahman MA, Razavizadeh BB, Abouzari-lotf E (2015) Karlen D. I. Integrated ecological risk assessment of dioxin compounds. Environ Sci Pollut Res Int 22:11193–11208. https://doi.org/10.1007/s11356-015-4511-x

    Article  CAS  Google Scholar 

  4. Ruiz-Vera T, Pruneda-Alvarez LG, Ochoa-Martinez AC, Ramirez-Garcia-Luna JL, Pierdant-Perez M, Gordillo-Moscoso AA, Perez-Vazquez FJ (2015) Perez-Maldonado I. N. Assessment of vascular function in Mexican women exposed to polycyclic aromatic hydrocarbons from wood smoke. Environ Toxicol Pharmacol 40:423–429. https://doi.org/10.1016/j.etap.2015.07.014

    Article  CAS  Google Scholar 

  5. Patrizi B, Siciliani de Cumis M, Viciani S, D’Amato F Dioxin and Related Compound Detection: Perspectives for Optical Monitoring.International journal of molecular sciences2019: 20(11):2671. https://doi.org/10.3390/ijms20112671

  6. Kerkvliet N (2002) I. Recent advances in understanding the mechanisms of TCDD immunotoxicity. Int Immunopharmacol 2:277–291. https://doi.org/10.1016/s1567-5769(01)00179-5

    Article  CAS  Google Scholar 

  7. Furue M, Ishii Y, Tsukimori K, Tsuji G Aryl Hydrocarbon Receptor and Dioxin-Related Health Hazards-Lessons from Yusho.International journal of molecular sciences2021: 22(2):708. https://doi.org/10.3390/ijms22020708

  8. Vogel C, Van Winkle LS, Esser C, Haarmann-Stemmann T (2020) The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 34:101530. https://doi.org/10.1016/j.redox.2020.101530

    Article  CAS  Google Scholar 

  9. Li H, Luo L, Wang D, Duan J, Zhang R (2020) Lack of association between multiple polymorphisms in aryl hydrocarbon receptor (AhR) gene and cancer susceptibility. Environ Health Prev Med 25:79. https://doi.org/10.1186/s12199-020-00907-z

    Article  CAS  Google Scholar 

  10. Hayashi S, Kiyohara C (1995) Polymorphisms of human Ah receptor gene are not involved in lung cancer. Pharmacogenetics 5:151–158. https://doi.org/10.1097/00008571-199506000-00003

    Article  Google Scholar 

  11. Luo C, Zou P, Ji G, Gu A, Zhao C (2013) The aryl hydrocarbon receptor (AhR) 1661G > A polymorphism in human cancer: a meta-analysis. Gene 513(1):225–230. https://doi.org/10.1016/j.gene.2012.09.050

    Article  CAS  Google Scholar 

  12. Wong JM, Harper PA, Meyer UA, Bock KW, Morike K, Lagueux J, Ayotte P, Tyndale RF, Sellers EM, Manchester DK (2001) Okey A. B. Ethnic variability in the allelic distribution of human aryl hydrocarbon receptor codon 554 and assessment of variant receptor function in vitro. Pharmacogenetics 11:85–94. https://doi.org/10.1097/00008571-200102000-00010

    Article  CAS  Google Scholar 

  13. Mescher M, Haarmann-Stemmann T (2018) Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 187:71–87. https://doi.org/10.1016/j.pharmthera.2018.02.012

    Article  CAS  Google Scholar 

  14. Chatterjee A, Gupta S (2018) The multifaceted role of glutathione S-transferases in cancer. Cancer Lett 433:33–42. https://doi.org/10.1016/j.canlet.2018.06.028

    Article  CAS  Google Scholar 

  15. Hirata H, Hinoda Y, Okayama N, Suehiro Y, Kawamoto K, Kikuno N, Rabban JT, Chen LM, Dahiya R (2007) CYP1A1, SULT1A1, and SULT1E1 polymorphisms are risk factors for endometrial cancer susceptibility. Cancer 112(9):1964–1973. https://doi.org/10.1002/cncr.23392

    Article  CAS  Google Scholar 

  16. Rajagopal T, Seshachalam A, Rathnam KK, Jothi A, Talluri S, Venkatabalasubramanian S, Dunna NR. Impact of xenobiotic-metabolizing gene polymorphisms on breast cancer risk in South Indian women.Breast cancer research and treatment2021: 186(3):823–837. https://doi.org/10.1007/s10549-020-06028-z

  17. Liu Y, Xu LZ (2012) Meta-analysis of association between GSTM1gene polymorphism and cervical cancer. Asian Pac J Top Med 5:480–484. https://doi.org/10.1016/S1995-7645(12)60083-2

    Article  CAS  Google Scholar 

  18. Leme CVD, Raposo LS, Ruiz MT, Galbiatti A, Maniglia J (2010) GSTM1 and GSTT1 genes analysis in head and neck cancer patients. Res Assoc Med Bras 56:299–303. https://pubmed.ncbi.nlm.nih.gov/20676536/

    Article  Google Scholar 

  19. Zivkovic M, Bubic M, Kolakovic A, Dekleva M, Stankovic G, Stankovic A, Djuric T. The association of glutathione S-transferase T1 and M1 deletions with myocardial infarction.Free radical research2021: 55(3):267–274. https://doi.org/10.1080/10715762.2021.1931166

  20. Morris K (2013) Revising the Declaration of Helsinki. The lancet 381(9881):1889–1890. https://doi.org/10.1016/s0140-6736(13)60951-4

    Article  Google Scholar 

  21. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215–1218. https://doi.org/10.1093/nar/16.3.1215

    Article  CAS  Google Scholar 

  22. Baily LR, Roodi N, Verrier CS, Yee CJ, Dupont WD, Parl FF (1998) Breast cancer and CYP1A1, GSTM1 and GSTT1 polymorphisms: evidence of a lack of association in Caucasians and African Americans. Cancer Res 58:65–70. https://pubmed.ncbi.nlm.nih.gov/9426059/

    Google Scholar 

  23. Mittal B, Bhattacharya S (2013) Associations of CYP1A1, GSTM1 and GSTT1 polymorphisms with lung cancer susceptibility in a northern Indian population. Asian Pac J Cancer Prey 14:3345–3349. https://doi.org/10.7314/apjcp.2013.14.5.3345

    Article  Google Scholar 

  24. Babekir EA, Abdelateif NM, Adelrahim SO, Hassan R, Ibrahim IK (2019) GSTM1 and GSTT1 Polymorphisms and Susceptibility to Acute Myeloid Leukemia: A Case-Control Study of the Sudanese Population. A P J C B 4:7–10. https://doi.org/10.31557/APJCB.2019.4.1.7

    Article  CAS  Google Scholar 

  25. Al-Koofee D. A., Mobarak S. M. PRIMER1: A network service for tetra-arms PCR primer design based on well-known dbSNP. Research Journal of Pharmacy and Technology 2018:11(8): 3633–3637. https://doi.org/10.5958/0974-360X.2018.00669.8

  26. Patel H, Jeve YB, Sherman SM, Moss EL. (2016) Knowledge of human papillomavirus and the human papillomavirus vaccine in European adolescents: a systematic review. Sex Transm Infect 92(6):474–479. https://doi.org/10.1136/sextrans-2015-052341

  27. I. A. R. C. Monographs on the evaluation of carcinogenic risks to humans. Polycyclic aromatic compound. Part 1.Chemical, environmental and experimental data:32. https://www.ncbi.nlm.nih.gov/books/NBK419306/?report=reader

  28. Nebert DW. (2017). Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res 67:38–57. https://doi.org/10.1016/j.plipres.2017.06.001

  29. Sangrajrang S, Sato Y, Sakamoto H, Ohnami S, Laird NM, Khuhaprema T, Brennan P (2009) Boffetta P., Yoshida T.Genetic polymorphisms of estrogen metabolizing enzyme and breast cancer risk in Thai women. Int J Cancer 125:837–843. https://doi.org/10.1002/ijc.24434

    Article  CAS  Google Scholar 

  30. Gu A, Ji G, Jiang T, Lu A, You Y, Liu N, Luo C, Yan W, Zhao P (2012) Contributions of aryl hydrocarbon receptor genetic variants to the risk of glioma and PAH-DNA adducts. Toxicol Sci 128:357–364. https://doi.org/10.1093/toxsci/kfs158

    Article  CAS  Google Scholar 

  31. Cheng T, Gamage S, Hewage D, Lu CT, Aktar S, Gopalan V, Lam A (2022) K. AHR gene expression and the polymorphism rs2066853 are associated with clinicopathological parameters in colorectal carcinoma. Hum Pathol 122:50–59. https://doi.org/10.1016/j.humpath.2022.02.001

    Article  CAS  Google Scholar 

  32. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey AB, Harper PA (2008) Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 11:3098–3107. https://doi.org/10.1158/1055-9965.EPI-08-0341

    Article  CAS  Google Scholar 

  33. Chen D, Tian T, Wang H, Liu H, Hu Z, Wang Y, Liu Y, Ma H, Fan W, Miao R, Sun W, Wang Y, Qian J, Jin L, Wei Q, Shen H, Huang W, Lu D (2009) Association of human aryl hydrocarbon receptor gene polymorphisms with risk of lung cancer among cigarette smokers in a Chinese population. Pharmacogenet Genomics 19:25–34. https://doi.org/10.1097/FPC.0b013e328316d8d8

    Article  CAS  Google Scholar 

  34. Long JR, Egan KM, Dunning L, Shu XO, Cai Q, Cai H, Zheng Y (2006) Population-based case-control study of AhR (aryl hydrocarbon receptor) and CYP1A2 polymorphisms and breast cancer risk. Pharmacogenet Genomics 16:237–243. https://doi.org/10.1097/01.fpc.0000189803.34339.ed

    Article  CAS  Google Scholar 

  35. Budhwar S, Bahl C, Sharma S, Singh N, Behera D (2018) Role of sequence variations in AhR gene towards modulating smoking-induced lung cancer susceptibility in North Indian population: a multiple interaction analysis. Curr Genomics 19:313–326. https://doi.org/10.2174/1389202918666170915160606

    Article  CAS  Google Scholar 

  36. Zhang DS, Lin GF, Ma QW, Shen JH (2002) Non-association of aryl hydrocarbon receptor genotypes with susceptibility to bladder cancer in Shanghai population. Acta Pharmacol Sin 23:188–192. https://pubmed.ncbi.nlm.nih.gov/11866883/

    Google Scholar 

  37. Gao M, Li Y, Xue X, Long J, Chen L, Shah W, Kong Y, Impact(2014) of AhR, CYP1A1 and GSTM1 genetic polymorphisms on TP53 R273G mutations in individuals exposed to polycyclic aromatic hydrocarbons. Asian Pac. J. Cancer Prev. : 15: 2699–2705. https://doi.org/10.7314/APJCP.2014.15.6.2699

  38. Ramadoss P, Marcus C, Perdew GH (2005) Role of the aryl hydrocarbon receptor in drug metabolism. Expert Drug Metab Toxicol 1:9–21. https://doi.org/10.1517/17425255.1.1.9

    Article  CAS  Google Scholar 

  39. Aftabi Y, Colagar AH, Mehrnejad F. An in-silico approach to investigate the source of the controversial interpretations about the phenotypic results of the human AhR-gene G1661A polymorphism.J. Theor. Biol.2016: 393:1–15. https://doi.org/10.1016/j.jtbi.2016.01.001

  40. Smart J, Daly AK (2000) Variation in induced CYP1A1 levels: Relationship to CYP1A1, Ah receptor and GSTM1 polymorphisms. Pharmacogenetics 10:11–24. https://doi.org/10.1097/00008571-200002000-00003

    Article  CAS  Google Scholar 

  41. Shiizaki K., Kawanishi M., Yagi T. Modulation of benzo[a]pyrene–DNA adduct formation by CYP1 inducer and inhibitor. Genes and Environ 2017: 39: 14. https://doi.org/10.1186/s41021-017-0076-x

    Article  Google Scholar 

  42. Ding G., Xu W., Liu H., Zhang M., Huang Q., Liao Z. CYP1A1MspI polymorphism is associated with prostate cancer susceptibility: evidence from a meta-analysis. Mol. Biol. Rep. 2013: 40: 3483-3491 https://doi.org/10.1007/s11033-012-2423-0

  43. Xia L., Gao J., Liu Y., Wu K. Significant association between CYP1A1 T3801C polymorphism and cervical neoplasia risk: a systematic review and meta-analysis. Tumor Biol. 2013: 34: 223-230. https://doi.org/10.1007/s13277-012-0542-9

    Article  CAS  Google Scholar 

  44. Ding B., Sun W., Han S., Cai Y., Ren M., Shen Y. Cytochrome P450 1A1 gene polymorphisms and cervical cancer risk: a systematic review and meta-analysis. Medicine 2018: 97(13): e0210. https://doi.org/10.1097/MD.0000000000010210

    Article  CAS  Google Scholar 

  45. Juárez-Cedillo T., Vallejo M., Fragoso J. M., Hernández-Hernandez D. M., Rodríguez-Pérez J. M., Sánchez- García S., del Carmen García-Peña M., García-Carrancá A., Mohar-Betancourt A., Granados J., Vargas-Alarcón G. The risk of developing cervical cancer in Mexican women is associated to CYP1A1MspI polymorphism. Eur. J. Cancer 2007: 43(10): 1590-1595. https://doi.org/10.1016/j.ejca.2007.03.025

    Article  CAS  Google Scholar 

  46. Joseph T., Chacko P., Wesley R., Jayaprakash P. G., James F. V., Pillai M. R. Germline genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes in Indian cervical cancer: associations with tumour progression, age and human papillomavirus infection. Gynecologic oncology 2006: 101(3): 411-417. https://doi.org/10.1016/j.ygyno.2005.10.033

    Article  CAS  Google Scholar 

  47. Abbas M., Srivastava K., Imran M., Banerjee M. Association of CYP1A1 gene variants rs4646903 (T > C) and rs1048943 (A > G) with cervical cancer in a North Indian population. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014: 176: 68-74. https://doi.org/10.1016/j.ejogrb.2014.02.036

    Article  CAS  Google Scholar 

  48. Von Keyserling H., Bergmann T., Schuetz M., Schiller U., Stanke J., Hoffmann C., Schneider A., Lahrach H., Dahl A., Kaufmann A. M. Analysis of 4 single nucleotide polymorphisms in relation to cervical dysplasia and cancer development using a high-though put ligation-detection reaction procedure. Int. J. Gynecol. Cancer 2011: 21: 1664- 1671. https://doi.org/10.1097/IGC.0b013e31822b6299

  49. Tan Y. H., Sidik S. M., Syed Husain S. N., Lye M. S., Chong P. P. CYP1A1MspI polymorphism and cervical carcinoma risk in the multi-ethnic population of Malaysia: a case-control study. Asian Pac. J. Cancer Prev. 2016: 17: 57-64. https://doi.org/10.7314/apjcp.2016.17.1.57

    Article  Google Scholar 

  50. Nishino K., Sekine M., Kodama S., Sudo N., Aoki Y., Seki N., Tanaka K. Cigarette smoking and glutathione Stransferase M1 polymorphism associated with risk for uterine cervical cancer. J. Obstet. Gynecol. Res. 2008: 34: 994-1001. https://doi.org/10.1111/j.1447-0756.2008.00798.x

    Article  CAS  Google Scholar 

  51. Satinder K., Sobti R. C., Pushpinder K. Impact of single nucleotide polymorphism in chemical metabolizing genes and exposure to wood smoke on risk of cervical cancer in North-Indian women. Exp. Oncol. 2017: 39: 69-74. https://pubmed.ncbi.nlm.nih.gov/28361858/

    Article  CAS  Google Scholar 

  52. Agorastos T., Papadopoulos N., Lambropoulos A. F., Chrisafi S., Mikos T., Goulis D. G., Constantinidis T. C., Kotsis A., Bontis J. N. Glutathione-S-transferase M1 and T1 and cytochrome P1A1 genetic polymorphisms and susceptibility to cervical intraepithelial neoplasia in Greek women. Eur. J. Cancer Prev. 2007: 16: 498-504. https://doi.org/10.1097/01.cej.0000243859.99265.92

    Article  CAS  Google Scholar 

  53. Matos A., Cindy Castelão C., Pereira da Sliva A., Alho I., Bicho M., Medeiros R., Bicho M. C. Epistatic interaction of CYP1A1 and COMT polymorphisms in cervical cancer. Oxid. Med. Cell. Longev. 2016: 2016: 1-7. https://doi.org/10.1155/2016/2769804

    Article  CAS  Google Scholar 

  54. Sneha S., Baker S. C., Green A., Storr S., Aiyappa R., Martin S., Pors K. Intratumoral Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021: 9(3): 290. https://doi.org/10.3390/biomedicines9030290

    Article  CAS  Google Scholar 

  55. Autrup H. Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response. Mutat. Res. 2000: 464: 65-76. https://doi.org/10.1016/s1383-5718(99)00167-9

    Article  CAS  Google Scholar 

  56. Dusinska M., Ficek A., Horska A., Raslova K., Petrovska H., Vallova B., Drlickova M., Wood S. G., Stupakova A., Gasparovic J., Bobek P., Nagyova A., Kovacikova Z., Blazicek P., Liegebel U., Collins A. R. Glutathione Stransferase polymorphisms influence the level of oxidative DNA damage and antioxidant protection in humans. Mutat. Res. 2001: 482: 47-55. https://doi.org/10.1016/s0027-5107(01)00209-3

    Article  Google Scholar 

  57. He H. R., You H. S., Sun J. Y., Hu S. S., Ma Y., Dong Y. L., Lu J. Glutathione S-transferase gene polymorphisms and susceptibility to acute myeloid leukemia: meta-analyses. Jpn. J. Clin. Oncol. 2014: 44(11): 1070-1081. https://doi.org/10.1093/jjco/hyu121

    Article  Google Scholar 

  58. Liu K., Lin X., Zhou Q., Ma T., Han L., Mao G., Chen J., Yue X., Wang H., Zhang L., Jin G., Jiang J., Zhao J., Zou B. The associations between two vital GSTs genetic polymorphisms and lung cancer risk in the Chinese population/ evidence from 71 studies. P. Lo. S. O. N. E. 2014: 9(7): e102372. https://doi.org/10.1371/journal.pone.0102372

    Article  Google Scholar 

  59. Kalacas N. A., Garcia J. A., Ortin T. S., Valdez Jr A., Fellizar A., Ramos M. C., Albano P. M. GSTM1 and GSTT1 genetic polymorphisms and breast cancer risk in selected Filipino cases. Asian Pacific journal of cancer prevention: A. P. J. C. P. 2019: 20(2): 529. https://doi.org/10.31557/APJCP.2019.20.2.529

    Article  CAS  Google Scholar 

  60. Sfar S., Saad H., Mosbah F., Chouchane L. Combined effects of the angiogenic genes polymorphisms on prostate cancer susceptibility and aggressiveness. Molecular biology reports 2009: 36(1): 37–45. https://doi.org/10.1007/s11033-007-9149-4

    Article  CAS  Google Scholar 

  61. Fan H. H., Li B. Q., Wu K. Y., Yan H. D., Gu M. J., Yao X. H., Dong H. J., Zhang X., Zhu J. H. Polymorphisms of Cytochromes P450 and Glutathione S-Transferases Synergistically Modulate Risk for Parkinson’s Disease. Frontiers in aging neuroscience 2022: 14: 888942. https://doi.org/10.3389/fnagi.2022.888942

    Article  CAS  Google Scholar 

  62. Ritambhara Tiwari S., Vijayaraghavalu S., Kumar M. Genetic Polymorphisms of Xenobiotic Metabolizing Genes (GSTM1, GSTT1, GSTP1), Gene-Gene Interaction with Association to Lung Cancer Risk in North India; A Case Control Study. Asian Pacific journal of cancer prevention: APJCP: 2019: 20(9): 2707–2714. https://doi.org/10.31557/APJCP.2019.20.9.2707

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all Tunisian subjects for their participation in this study. This work was supported by the Ministry of Higher Education and Scientific and Technological Research and the Ministry of Public Health of Tunisia. The authors thank Mr. Adel Rdissi and Dr. Manel Ben Taher for the English revision, and Pr. Asma Omezzine for her support in the statistical study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Study design: A. H. and A. K., Patient enrollment and sample collection: A. H., N. B., and H. B., Experiments, data collection, and data analysis: A. H., N. B., S.S., F. D., M. D., Z. H., and A. K. Manuscript writing: A. H., S. S., M. D., and A. K., All authors revised the manuscript and approved its final version.

Corresponding author

Correspondence to Ahlem Helaoui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval:

Approval of the ethical standards of the Ethics Committee for Research in Life Sciences and Health of the ISBM (CER-SVS/isbm 007/2021) was obtained.

Consent to participate:

Informed written consent was obtained from all women according to the ethical standards of the Ethics Committee for Research in Life Sciences and Health of the ISBM (CER-SVS/ISBM).

Consent for publication:

Informed consent was obtained from all participants for whom identifying information is included in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helaoui, A., Sfar, S., Boudhiba, N. et al. Association of xenobiotic-metabolizing genes polymorphisms with cervical cancer risk in the Tunisian population. Mol Biol Rep 50, 949–959 (2023). https://doi.org/10.1007/s11033-022-07945-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07945-6

Keywords

Navigation