Skip to main content

Advertisement

Log in

Two missense variants of the epidermal growth factor receptor gene are associated with non small cell lung carcinoma in the subjects from Iraq

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Lung carcinoma is a foremost cause of cancer-related mortality worldwide. Variable genetic factors are associated with the development of lung cancer. This study was performed to evaluate the possible association of epidermal growth factor receptor (EGFR) gene polymorphisms with non small cell lung carcinoma (NSCLC) in Iraqi population.

Methods

DNA samples were extracted from 100 patients and 100 controls. Four PCR fragments were designed to amplify four high-frequency variants within EGFR, namely rs1050171, rs2072454, rs2227984, and rs2227983. The PCR fragments were genotyped by single-strand conformation polymorphism (SSCP) method, and each genotype was subjected to direct sequencing.

Results

Genotyping experiments confirmed the variability of three targeted variants, and logistic regression analysis showed that two of these variants (rs1050171 and rs2227983) tend to exhibit a significant association with NSCLC. Individuals with rs1050171:GA genotype showed a possible association with the increased risk of NSCLC (P = 0.0110; OD 5.2636; Cl95% 1.4630 to 18.9371). Individuals with rs2227983:GG genotype exhibited a potential association with NSCLC (P = 0.0037; OD 5.2683; Cl95% 1.7141 to 16.1919). Linkage disequilibrium analysis showed that the effects of the investigated variants seem to take independent actions, and no haplotype was found to be associated with the high prevalence of NSCLC.

Conclusions

Our collective data indicated that EGFR-rs1050171G/A and EGFR-rs2227983G/G SNPs tend to exert significant and separate associations with the increased risk of NSCLC. However, this study recommends using a broader spectrum of the investigated samples to get further details of both SNPs in terms of their association with the susceptibility to NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available privacy and ethical restrictions, as stipulated by the University of Kufa Institutional Review Board.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  2. Jazieh AR, Algwaiz G, Errihani H et al (2019) Lung cancer in the Middle East and North Africa region. J Thorac Oncol 14:1884–1891

    Article  PubMed  Google Scholar 

  3. Hussain AMA, Lafta RK (2021) Cancer trends in Iraq 2000–2016. Oman Med J 36:e219

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wong M, Lao XQ, Ho K-F et al (2017) Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep 7:1–9

    Google Scholar 

  5. Gao H, Niu Y, Li M et al (2017) Identification of DJ-1 as a contributor to multidrug resistance in human small-cell lung cancer using proteomic analysis. Int J Exp Pathol 98:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henschke CI, McCauley DI, Yankelevitz DF et al (1999) Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 354:99–105

    Article  CAS  PubMed  Google Scholar 

  7. Diaz-Lagares A, Mendez-Gonzalez J, Hervas D et al (2016) A novel epigenetic signature for early diagnosis in lung cancer. Clin Cancer Res 22:3361–3371

    Article  CAS  PubMed  Google Scholar 

  8. Hamann HA, Ver Hoeve ES, Carter-Harris L et al (2018) Multilevel opportunities to address lung cancer stigma across the cancer control continuum. J Thorac Oncol 13:1062–1075

    Article  PubMed  PubMed Central  Google Scholar 

  9. El-Baz A, Gimel’farb G, Falk R et al (2009) Toward early diagnosis of lung cancer. In: Yang G-Z, Hawkes D, Rueckert D, Noble A, Taylor C (eds) International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 682–689

    Google Scholar 

  10. Liao Y, Yin G, Wang X et al (2019) Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Oncol Lett 18:3723–3733

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zawadzka I, Jeleń A, Pietrzak J et al (2020) The impact of ABCB1 gene polymorphism and its expression on non-small-cell lung cancer development, progression and therapy–preliminary report. Sci Rep 10:1–10

    Article  Google Scholar 

  12. Sigismund S, Avanzato D, Lanzetti L (2018) Emerging functions of the EGFR in cancer. Mol Oncol 12:3–20

    Article  PubMed  Google Scholar 

  13. Press OA, Zhang W, Gordon MA et al (2008) Gender-related survival differences associated with EGFR polymorphisms in metastatic colon cancer. Cancer Res 68:3037–3042

    Article  CAS  PubMed  Google Scholar 

  14. Brandt B, Hermann S, Straif K et al (2004) Modification of breast cancer risk in young women by a polymorphic sequence in the EGFR gene. Cancer Res 64:7–12

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Zhan Z, Wu J et al (2013) Association among polymorphisms in EGFR gene exons, lifestyle and risk of gastric cancer with gender differences in Chinese Han subjects. PLoS ONE 8:e59254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mason RA, Morlock EV, Karagas MR et al (2009) EGFR pathway polymorphisms and bladder cancer susceptibility and prognosis. Carcinogenesis 30:1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rebai M, Kallel I, Hamza F et al (2009) Association of EGFR and HER2 polymorphisms with risk and clinical features of thyroid cancer. Genet Test Mol Biomarkers 13:779–784

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y-L, Chien M-H, Chou Y-E et al (2019) Association of EGFR mutations and HMGB1 genetic polymorphisms in lung adenocarcinoma patients. J Cancer 10:2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo Y, Song J, Wang Y et al (2020) Concurrent genetic alterations and other biomarkers predict treatment efficacy of EGFR-TKIs in EGFR-mutant non-small cell lung cancer: a review. Front Oncol 10:610923

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin C-H, Yang P-J, Lin S-H et al (2020) Association between EGFR gene mutation and antioxidant gene polymorphism of non-small-cell lung cancer. Diagnostics 10:692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyamoto S, Azuma K, Ishii H et al (2020) Low-dose erlotinib treatment in elderly or frail patients with EGFR mutation-positive non-small cell lung cancer: a multicenter phase 2 trial. JAMA Oncol 6:e201250–e201250

    Article  PubMed  PubMed Central  Google Scholar 

  22. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59:S21–S26

    Article  Google Scholar 

  23. Normanno N, De Luca A, Bianco C et al (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  CAS  PubMed  Google Scholar 

  24. Bogdan S, Klämbt C (2001) Epidermal growth factor receptor signaling. Curr Biol 11:R292–R295

    Article  CAS  PubMed  Google Scholar 

  25. Chen T-H, Kung W-S, Sun H-Y et al (2021) The relationship between metabolic syndrome and plasma metals modified by EGFR and TNF-α gene polymorphisms. Toxics 9:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jurisic V, Vukovic V, Obradovic J et al (2020) EGFR polymorphism and survival of NSCLC patients treated with TKIs: a systematic review and meta-analysis. J Oncol. https://doi.org/10.1155/2020/1973241

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ma F, Sun T, Shi Y et al (2009) Polymorphisms of EGFR predict clinical outcome in advanced non-small-cell lung cancer patients treated with Gefitinib. Lung Cancer 66:114–119

    Article  PubMed  Google Scholar 

  28. Al-Shuhaib MBS (2018) A minimum requirements method to isolate large quantities of highly purified DNA from one drop of poultry blood. J Genet. https://doi.org/10.1007/s12041-018-0983-z

    Article  PubMed  Google Scholar 

  29. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Badi MA, Al-Shuhaib MBS, Aljubouri TRS et al (2021) Rapid and optimized protocol for efficient PCR-SSCP genotyping for wide ranges of species. Biologia (Bratisl) 76:2413–2420

    Article  CAS  Google Scholar 

  31. Hashim HO, Al-Shuhaib MBS (2019) Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: a review. J Appl Biotechnol Rep 6:137–144

    Article  CAS  Google Scholar 

  32. Musafer KNJ, Huyop FZ, Ewadh MJ et al (2021) The single nucleotide polymorphisms rs11761556 and rs12706832 of the leptin gene are associated with type 2 diabetes mellitus in the Iraqi population. Arch Biol Sci 73:93–101

    Article  Google Scholar 

  33. Schoonjans F, Zalata A, Depuydt CE, Comhaire FH (1995) MedCalc: a new computer program for medical statistics. Comput Methods Progr Biomed 48:257–262

    Article  CAS  Google Scholar 

  34. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  35. Alyousef YM, Borgio JF, AbdulAzeez S et al (2017) Association of MBL2 gene polymorphism with dental caries in Saudi children. Caries Res 51:12–16

    Article  CAS  PubMed  Google Scholar 

  36. Alsubaie LM, Alsuwat HS, Almandil NB et al (2020) Risk Y-haplotypes and pathogenic variants of Arab-ancestry boys with autism by an exome-wide association study. Mol Biol Rep 47:7623–7632

    Article  CAS  PubMed  Google Scholar 

  37. AbdulAzeez S, Al-Nafie AN, Al-Shehri A et al (2016) Intronic polymorphisms in the CDKN2B-AS1 gene are strongly associated with the risk of myocardial infarction and coronary artery disease in the Saudi population. Int J Mol Sci 17:395

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rogers TK (2019) Minimising diagnostic delay in lung cancer. Thorax 74:319–320

    Article  PubMed  Google Scholar 

  39. Nooreldeen R, Bach H (2021) Current and future development in lung cancer diagnosis. Int J Mol Sci 22:8661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wrzosek M, Sawicka A, Wrzosek M et al (2019) Age at onset of obesity, transcription factor 7-like 2 (TCF7L2) rs7903146 polymorphism, adiponectin levels and the risk of type 2 diabetes in obese patients. Arch Med Sci AMS 15:321

    Article  CAS  PubMed  Google Scholar 

  41. Saravani S, Parsamanesh N, Miri-Moghaddam E (2020) Role of EGFR gene polymorphisms in oral squamous cell carcinoma patients of Southeast Iran: a case–control study. Casp J Intern Med 11:391

    Google Scholar 

  42. Uroog L, Bhat ZI, Imtiyaz K et al (2020) Genetic variants of epidermal growth factor receptor (EGFR) and their association with colorectal cancer risk in North Indian population. Gene Rep 19:100681

    Article  CAS  Google Scholar 

  43. Bonin S, Donada M, Bussolati G et al (2016) A synonymous EGFR polymorphism predicting responsiveness to anti-EGFR therapy in metastatic colorectal cancer patients. Tumor Biol 37:7295–7303

    Article  CAS  Google Scholar 

  44. Xu S, Duan Y, Lou L et al (2016) Exploring the impact of EGFR T790M neighboring SNPs on ARMS-based T790M mutation assay. Oncol Lett 12:4238–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lobl M, Higgins S, Hass B et al (2020) 15172 Identification of germline mutations affecting the incidence and prognosis of high-risk cutaneous squamous cell carcinoma: a pilot study. J Am Acad Dermatol 83:AB31

    Article  Google Scholar 

  46. Yang P-W, Hsieh M-S, Huang Y-C et al (2014) Genetic variants of EGF and VEGF predict prognosis of patients with advanced esophageal squamous cell carcinoma. PLoS ONE 9:e100326

    Article  PubMed  PubMed Central  Google Scholar 

  47. Landrum MJ, Lee JM, Riley GR et al (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980–D985

    Article  CAS  PubMed  Google Scholar 

  48. Greig MJ, Niessen S, Weinrich SL et al (2015) Effects of activating mutations on EGFR cellular protein turnover and amino acid recycling determined using SILAC mass spectrometry. Int J Cell Biol 2015:1–8

    Article  Google Scholar 

  49. De Castro G, Skare N, Segalla JGM et al (2014) Molecular marker analyses of EGFR and KRAS from the randomized phase II study of nimotuzumab in locally advanced esophageal cancer (nice trial). Ann Oncol 25:iv218

    Article  Google Scholar 

  50. Showeil R, Romano C, Valganon M et al (2016) The status of epidermal growth factor receptor in borderline ovarian tumours. Oncotarget 7:10568

    Article  PubMed  PubMed Central  Google Scholar 

  51. Weiss GA, Rossi MR, Khushalani NI et al (2013) Evaluation of phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) and epidermal growth factor receptor (EGFR) gene mutations in pancreaticobiliary adenocarcinoma. J Gastrointest Oncol 4:20

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Carneiro JG, Couto PG, Bastos-Rodrigues L et al (2014) Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients. Genet Res (Camb). https://doi.org/10.1017/S0016672314000032

    Article  PubMed  Google Scholar 

  53. Sari M, Aydiner A (2020) Rare mutations of epidermal growth factor receptor in epidermal growth factor receptor-tyrosine kinase inhibitor-naive non-small cell lung carcinoma and the response to erlotinib therapy. J Cancer Res Ther 16:132

    Article  CAS  PubMed  Google Scholar 

  54. Wu W-J, Yang S-H, Chung H-P et al (2022) EGFR Q787Q polymorphism is a germline variant and a prognostic factor for lung cancer treated with TKIs. Front Oncol 12:816801

    Article  PubMed  PubMed Central  Google Scholar 

  55. Savukaityte A, Ugenskiene R, Korobeinikova E et al (2021) The investigation of associations between TP53 rs1042522, BBC3 rs2032809, CCND1 rs9344, EGFR rs2227983 polymorphisms and breast cancer phenotype and prognosis. Diagnostics 11:1419

    Article  PubMed  PubMed Central  Google Scholar 

  56. Han C, Liao X, Qin W et al (2016) EGFR and SYNE2 are associated with p21 expression and SYNE2 variants predict post-operative clinical outcomes in HBV-related hepatocellular carcinoma. Sci Rep 6:1–16

    Google Scholar 

  57. Butkiewicz D, Krześniak M, Gdowicz-Kłosok A et al (2021) Polymorphisms in EGFR gene predict clinical outcome in unresectable non-small cell lung cancer treated with radiotherapy and platinum-based chemoradiotherapy. Int J Mol Sci 22:5605

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Middle-Euphrates Cancer Center (MECC), Najaf province, and Merjan Cancer Center (MCC), Babil province for granting the samples and providing informative scientific help to accompany the preliminary data preparations.

Funding

This work was not financially supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

ZKL developed the work, and conducted genotyping experiments. MBSA contributed to the supervision of the work, analyzed the data, and wrote the manuscript. TMA supervised the research. AHA participated in the genotyping experiments. All authors approved the final version of the work.

Corresponding author

Correspondence to Mohammed Baqur S. Al-Shuhaib.

Ethics declarations

Conflict of interest

No conflict of interest is reported by the authors.

Ethical approval

The experiments performed in the study were conducted following the Helsinki Declaration for experiments involving people and the biochemical research involving human subjects was approved by the Institutional Review Board (IRB) in the University of Kufa (IECIH/UOK 088/2020; CAAE 08802212). Signed written informed consents were obtained from all participants before being involved in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawi, Z.K., Al-Shuhaib, M.B.S., Amara, I.B. et al. Two missense variants of the epidermal growth factor receptor gene are associated with non small cell lung carcinoma in the subjects from Iraq. Mol Biol Rep 49, 11653–11661 (2022). https://doi.org/10.1007/s11033-022-07933-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07933-w

Keywords

Navigation