Skip to main content

Advertisement

Log in

Molecular characterization and antibiogram of the carbapenemase gene variants in clinical strains of Pseudomonas aeruginosa

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Carbapenemase-producing Pseudomonas aeruginosa (CPPA) is a substantial clinical concern because it jeopardizes therapeutic choices. This study characterizes the gene variants of CPPA and report its antibiogram.

Methods

CPPA was isolated prospectively from diverse clinical sources in a tertiary care setting using a routine microbiological approach. Carbapenem-resistant P. aeruginosa strains were phenotypically identified using the modified carbapenem inactivation (mCIM) method. Minimum inhibitory concentration (MIC) breakpoints of several antibacterial drug groups were determined using broth microdilution methods and the MicroScan WalkAway plus system. Carbapenemase gene variants blaNDM, blaVIM, blaOXA,blaGES, and blaIMP were amplified using polymerase chain reaction (PCR), and the purified gene products were sequenced.

Results

Seventy-one P. aeruginosa-infected cases were found, with 47 (66.2%) carrying CPPA; 46.8% of the latter were significantly associated with intensive care units (p = 0.03). CPPA was frequently detected in wound swabs (13; 27.7%), sputum (11; 23.4%), and blood (9; 19.1%). All strains were multidrug-resistant (MDR), and several were extensively drug-resistant. MIC50 and MIC90 breakpoints of all antibiotics, except colistin, were within the resistance range. MIC90 breakpoints of aztreonam, amikacin, cefepime, and piperacillin-tazobactam were > 512 µg/mL. The multiple antibiotic resistance index (MARI) was remarkably high, with a range of 0.38–0.92. The most commonly detected carbapenemase genes were blaVIM (74%), blaNDM−1 (19%), blaOXA−23 (14.9%), and blaGES (10.6%), while 12 of 47 strains co-harbored different combinations of carbapenemase gene variants.

Conclusion

A large proportion of CPPA strains carried the blaVIM gene variant, indicating intimidating health problems and emphasizing the need for extensive surveillance and antibiotic stewardship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data are contained within the article.

References

  1. Hilliam Y, Kaye S, Winstanley C (2020) Pseudomonas aeruginosa and microbial keratitis. J Med Microbiol 69(1):3–13. https://doi.org/10.1099/jmm.0.001110

    Article  CAS  PubMed  Google Scholar 

  2. Ejaz H, Javeed A, Zubair M (2018) Bacterial contamination of Pakistani currency notes from hospital and community sources. Pak J Med Sci 34(5):1225–1230. https://doi.org/10.12669/pjms.345.15477

    Article  PubMed  PubMed Central  Google Scholar 

  3. Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422. https://doi.org/10.3389/fmicb.2013.00422

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bari A, Zeeshan F, Zafar A, Ejaz H, Iftikhar A, Rathore AW (2016) Childhood acute bacterial meningitis: Clinical spectrum, bacteriological profile and outcome. J Coll Physicians Surg Pak 26(10):822–826

    PubMed  Google Scholar 

  5. Jurado-Martín I, Sainz-Mejías M, McClean S (2021) Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 22(6). https://doi.org/10.3390/ijms22063128

  6. Behzadi P, Baráth Z, Gajdács M (2021) It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiot (Basel) 10(1). https://doi.org/10.3390/antibiotics10010042

  7. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  8. Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6(2):109–119. https://doi.org/10.1016/j.gendis.2019.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55(11):4943–4960. https://doi.org/10.1128/aac.00296-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Chen G, Wu X, Wang L, Cai J, Chan EW, Chen S, Zhang R (2015) Increased prevalence of carbapenem resistant Enterobacteriaceae in hospital setting due to cross-species transmission of the bla NDM-1 element and clonal spread of progenitor resistant strains. Front Microbiol 6:595. https://doi.org/10.3389/fmicb.2015.00595

    Article  PubMed  PubMed Central  Google Scholar 

  11. Basha AM, El-Sherbiny GM, Mabrouk MI (2020) Phenotypic characterization of the Egyptian isolates “extensively drug-resistant Pseudomonas aeruginosa” and detection of their metallo-β-lactamases encoding genes. Bull Natl Res Centre 44(1):1–11. https://doi.org/10.1186/s42269-020-00350-8

    Article  Google Scholar 

  12. Kaleem F, Usman J, Hassan A, Khan A (2010) Frequency and susceptibility pattern of metallo-beta-lactamase producers in a hospital in Pakistan. J Infect Dev Ctries 4(12):810–813. https://doi.org/10.3855/jidc.1050

    Article  PubMed  Google Scholar 

  13. Cavalcanti FL, Almeida AC, Vilela MA, Morais MM, Morais Junior MA (2012) Changing the epidemiology of carbapenem-resistant Pseudomonas aeruginosa in a Brazilian teaching hospital: the replacement of São Paulo metallo-β-lactamase-producing isolates. Mem Inst Oswaldo Cruz 107(3):420–423. https://doi.org/10.1590/s0074-02762012000300019

    Article  PubMed  Google Scholar 

  14. Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K (2015) Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother 47(2):81–97. https://doi.org/10.3947/ic.2015.47.2.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. WHO (2020) Global antimicrobial resistance surveillance system (‎GLASS)‎ report: early implementation 2020. https://apps.who.int/iris/handle/10665/332081. Accessed 25 August 2022

  16. Ibrahim ME, Bilal NE, Hamid ME (2012) Increased multi-drug resistant Escherichia coli from hospitals in Khartoum state, Sudan. Afr Health Sci 12(3):368–375. https://doi.org/10.4314/ahs.v12i3.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saha M, Sarkar A (2021) Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J Xenobiot 11(4):197–214. https://doi.org/10.3390/jox11040013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Javed H, Saleem S, Zafar A, Ghafoor A, Shahzad AB, Ejaz H, Junaid K, Jahan S (2020) Emergence of plasmid-mediated mcr genes from Gram-negative bacteria at the human-animal interface. Gut Pathog 12(1):54. https://doi.org/10.1186/s13099-020-00392-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R (2020) Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes 13(1):380. https://doi.org/10.1186/s13104-020-05224-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gajic I, Kabic J, Kekic D, Jovicevic M, Milenkovic M, Mitic Culafic D, Trudic A, Ranin L, Opavski N (2022) Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiot (Basel) 11(4). https://doi.org/10.3390/antibiotics11040427

  21. Khan ZA, Siddiqui MF, Park S (2019) Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics (Basel) 9(2). https://doi.org/10.3390/diagnostics9020049

  22. Association WM(2013) WMA Declaration of Helsinki – ethical principles for medical research involving human subjects. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. Accessed 25 August 2022

  23. Al-Tememe T, Abbas B (2022) Molecular detection and phylogenetic analysis of Pseudomonas aeruginosa isolated from some infected and healthy ruminants in Basrah, Iraq. Arch Razi Inst 77(2):525–532. https://doi.org/10.22092/ARI.2022.357802.2099

    Article  Google Scholar 

  24. El-Telbany M, El-Sharaki A (2022) Antibacterial and anti-biofilm activity of silver nanoparticles on multi-drug resistance pseudomonas aeruginosa isolated from dental-implant. J Oral Biol Craniofac Res 12(1):199–203. https://doi.org/10.1016/j.jobcr.2021.12.002

    Article  PubMed  Google Scholar 

  25. El-Far A, Samir S, El-Gebaly E, Omar M, Dahroug H, El-Shenawy A, Soliman NS, Gamal D (2021) High Rates of Aminoglycoside Methyltransferases Associated with Metallo-Beta-Lactamases in Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Clinical Isolates from a Tertiary Care Hospital in Egypt. Infect Drug Resist 14:4849–4858. https://doi.org/10.2147/idr.S335582

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ejaz H, Alzahrani B, Hamad MFS, Abosalif KOA, Junaid K, Abdalla AE, Elamir MYM, Aljaber NJ, Hamam SSM, Younas S (2020) Molecular Analysis of the Antibiotic Resistant NDM-1 Gene in Clinical Isolates of Enterobacteriaceae. Clin Lab 66(3). https://doi.org/10.7754/Clin.Lab.2019.190727

  27. CLSI (2022) Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standard Institute (CLSI) 32nd ed. Wayne, PA USA

  28. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  29. Ejaz H, Younas S, Abosalif KOA, Junaid K, Alzahrani B, Alsrhani A, Abdalla AE, Ullah MI, Qamar MU, Hamam SSM (2021) Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE 16(1):e0245126. https://doi.org/10.1371/journal.pone.0245126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ellington MJ, Kistler J, Livermore DM, Woodford N (2007) Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 59(2):321–322. https://doi.org/10.1093/jac/dkl481

    Article  CAS  PubMed  Google Scholar 

  31. Mlynarcik P, Roderova M, Kolar M (2016) Primer Evaluation for PCR and its Application for Detection of Carbapenemases in Enterobacteriaceae. Jundishapur J Microbiol 9(1):e29314. https://doi.org/10.5812/jjm.29314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blanc DS, Francioli P, Zanetti G (2007) Molecular Epidemiology of Pseudomonas aeruginosa in the Intensive Care Units - A Review. Open Microbiol J 1:8–11. https://doi.org/10.2174/1874285800701010008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ratajczak M, Kamińska D, Nowak-Malczewska DM, Schneider A, Dlugaszewska J (2021) Relationship between antibiotic resistance, biofilm formation, genes coding virulence factors and source of origin of Pseudomonas aeruginosa clinical strains. Ann Agric Environ Med 28(2):306–313. https://doi.org/10.26444/aaem/122682

    Article  CAS  PubMed  Google Scholar 

  34. Peña C, Suarez C, Gozalo M, Murillas J, Almirante B, Pomar V, Aguilar M, Granados A, Calbo E, Rodríguez-Baño J, Rodríguez F, Tubau F, Martínez-Martínez L, Oliver A (2012) Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob Agents Chemother 56(3):1265–1272. https://doi.org/10.1128/aac.05991-11

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dantas RC, Ferreira ML, Gontijo-Filho PP, Ribas RM (2014) Pseudomonas aeruginosa bacteraemia: independent risk factors for mortality and impact of resistance on outcome. J Med Microbiol 63(Pt 12):1679–1687. https://doi.org/10.1099/jmm.0.073262-0

    Article  PubMed  Google Scholar 

  36. Kim YJ, Jun YH, Kim YR, Park KG, Park YJ, Kang JY, Kim SI (2014) Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia; retrospective study of impact of combination antimicrobial therapy. BMC Infect Dis 14:161. https://doi.org/10.1186/1471-2334-14-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan X, Wu Y, Xiao M, Xu ZP, Kudinha T, Bazaj A, Kong F, Xu YC (2016) Diverse Genetic Background of Multidrug-Resistant Pseudomonas aeruginosa from Mainland China, and Emergence of an Extensively Drug-Resistant ST292 Clone in Kunming. Sci Rep 6:26522. https://doi.org/10.1038/srep26522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Singh-Moodley A, Duse A, Naicker P, Kularatne R, Nana T, Lekalakala R, Mbelle N, Dawood H, Swe Swe Han K, Ramjathan P, Bhola P, Whitelaw A, Perovic O (2018) Laboratory based antimicrobial resistance surveillance for Pseudomonas aeruginosa blood isolates from South Africa. J Infect Dev Ctries 12(8):616–624. https://doi.org/10.3855/jidc.9539

    Article  CAS  PubMed  Google Scholar 

  39. Ellappan K, Belgode Narasimha H, Kumar S (2018) Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J Glob Antimicrob Resist 12:37–43. https://doi.org/10.1016/j.jgar.2017.08.018

    Article  PubMed  Google Scholar 

  40. Mapipa Q, Digban TO, Nnolim NE, Nwodo UU (2021) Antibiogram profile and virulence signatures of Pseudomonas aeruginosa isolates recovered from selected agrestic hospital effluents. Sci Rep 11(1):11800. https://doi.org/10.1038/s41598-021-91280-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paul D, Dhar D, Maurya AP, Mishra S, Sharma GD, Chakravarty A, Bhattacharjee A (2016) Occurrence of co-existing bla VIM-2 and bla NDM-1 in clinical isolates of Pseudomonas aeruginosa from India. Ann Clin Microbiol Antimicrob 15:31. https://doi.org/10.1186/s12941-016-0146-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schäfer E, Malecki M, Tellez-Castillo CJ, Pfennigwerth N, Marlinghaus L, Higgins PG, Mattner F, Wendel AF (2019) Molecular surveillance of carbapenemase-producing Pseudomonas aeruginosa at three medical centres in Cologne, Germany. Antimicrob Resist Infect Control 8:208. https://doi.org/10.1186/s13756-019-0665-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Olaniran OB, Adeleke OE, Donia A, Shahid R, Bokhari H (2021) Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Curr Microbiol 79(1):27. https://doi.org/10.1007/s00284-021-02706-3

    Article  CAS  PubMed  Google Scholar 

  44. Mohanam L, Menon T (2017) Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa. Indian J Med Res 146(Supplement):S46–s52. https://doi.org/10.4103/ijmr.IJMR_29_16

    Article  PubMed  PubMed Central  Google Scholar 

  45. Saleem S, Bokhari H (2020) Resistance profile of genetically distinct clinical Pseudomonas aeruginosa isolates from public hospitals in central Pakistan. J Infect Public Health 13(4):598–605. https://doi.org/10.1016/j.jiph.2019.08.019

    Article  PubMed  Google Scholar 

  46. Dabbousi AA, Dabboussi F, Hamze M, Osman M, Kassem II (2022) The Emergence and Dissemination of Multidrug Resistant Pseudomonas aeruginosa in Lebanon: Current Status and Challenges during the Economic Crisis. Antibiot (Basel) 11(5). https://doi.org/10.3390/antibiotics11050687

  47. Walters MS, Grass JE, Bulens SN, Hancock EB, Phipps EC, Muleta D, Mounsey J, Kainer MA, Concannon C, Dumyati G, Bower C, Jacob J, Cassidy PM, Beldavs Z, Culbreath K, Phillips WE Jr, Hardy DJ, Vargas RL, Oethinger M, Ansari U, Stanton R, Albrecht V, Halpin AL, Karlsson M, Rasheed JK, Kallen A (2019) Carbapenem-Resistant Pseudomonas aeruginosa at US Emerging Infections Program Sites, 2015. Emerg Infect Dis 25(7):1281–1288. https://doi.org/10.3201/eid2507.181200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197(8):1079–1081. https://doi.org/10.1086/533452

    Article  PubMed  Google Scholar 

  49. Al Yousef SA (2022) In vitro bactericidal and imipenem synergistic effect of nano-silver against multiple drug-resistant Pseudomonas aeruginosa. J King Saud Unive Sci 34(1):101706. https://doi.org/10.1016/j.jksus.2021.101706

    Article  Google Scholar 

  50. Heidari R, Farajzadeh Sheikh A, Hashemzadeh M, Farshadzadeh Z, Salmanzadeh S, Saki M (2022) Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Mol Biol Rep 1–12. https://doi.org/10.1007/s11033-022-07225-3

  51. Qamar MU, Saleem S, Arshad U, Rasheed MF, Ejaz H, Shahzad N, Shah J (2017) Antibacterial efficacy of Manuka honey against New Delhi Metallo-β-Lactamase producing Gram negative bacteria isolated from blood cultures. Pak J Zool 49(6):1997–2003. https://doi.org/10.17582/journal.pjz/2017.49.6.1997.2003

    Article  CAS  Google Scholar 

  52. Takahashi T, Tada T, Shrestha S, Hishinuma T, Sherchan JB, Tohya M, Kirikae T, Sherchand JB (2021) Molecular characterisation of carbapenem-resistant Pseudomonas aeruginosa clinical isolates in Nepal. J Glob Antimicrob Resist 26:279–284. https://doi.org/10.1016/j.jgar.2021.07.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author extends his appreciation to the Deanship of Scientific Research at Jouf University for supporting this study.

Funding

This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-01-03183)”.

Author information

Authors and Affiliations

Authors

Contributions

HE conceived the idea, performed experiments and analysis, and wrote the manuscript.

Corresponding author

Correspondence to Hasan Ejaz.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest relevant to this study.

Ethical approval

The study was ethically approved by the Local Committee of Bioethics, Jouf University (4-03-43 Expedited), Saudi Arabia. The study does not comprise human or animal experimentation, and the specimens were collected with informed consent in the hospital.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejaz, H. Molecular characterization and antibiogram of the carbapenemase gene variants in clinical strains of Pseudomonas aeruginosa. Mol Biol Rep 49, 10531–10539 (2022). https://doi.org/10.1007/s11033-022-07930-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07930-z

Keywords

Navigation