Skip to main content

Advertisement

Log in

Feedback loop between fatty acid transport protein 2 and receptor interacting protein 3 pathways promotes polymorphonuclear neutrophil myeloid-derived suppressor cells-potentiated suppressive immunity in bladder cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) promote tumor immune tolerance and cause tumor immunotherapy failure. In this study, we found that high PMN-MDSCs infiltration, overexpressed fatty acid transporter protein 2 (FATP2) and underexpressed receptor-interacting protein kinase 3 (RIPK3) existed in the mouse and human bladder cancer tissues. However, the related mechanisms remain largely unknown.

Methods and results

Both FATP2 and RIPK3 expressions were associated with clinical stage. FATP2 knockout or up-regulating RIPK3 reduced the synthesis of prostaglandin E2 (PGE2) in PMN-MDSCs, attenuated the suppressive activity of PMN-MDSCs on CD8+ T cells functions and inhibited the tumor growth. There was a PGE2-mediated feedback loop between FATP2 and RIPK3 pathways, which markedly promoted the immunosuppressive activity of PMN-MDSCs. Combination therapy with inhibition of FATP2 and activation of RIPK3 can effectively inhibit tumor growth.

Conclusions

This study demonstrated that a feedback loop between FATP2 and RIPK3 pathways in PMN-MDSCs significantly promoted the synthesis of PGE2, which severely impaired the CD8+ T cell functions. This study may provide new ideas for immunotherapy of human bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  2. Yang Z, Xu Y, Bi Y, Zhang N, Wang H, Xing T et al (2021) Immune escape mechanisms and immunotherapy of urothelial bladder cancer. J Clin Transl Res 7(4):485–500

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Groth C, Weber R, Lasser S, Özbay FG, Kurzay A, Petrova V et al (2021) Tumor promoting capacity of polymorphonuclear myeloid-derived suppressor cells and their neutralization. Int J Cancer 149(9):1628–1638

    Article  CAS  PubMed  Google Scholar 

  4. Yamauchi Y, Safi S, Blattner C, Rathinasamy A, Umansky L, Juenger S et al (2018) Circulating and Tumor Myeloid-derived Suppressor Cells in Resectable Non-Small Cell Lung Cancer. Am J Respir Crit Care Med 198(6):777–787

    Article  PubMed  Google Scholar 

  5. Zhang H, Li ZL, Ye SB, Ouyang LY, Chen YS, He J et al (2015) Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunol Immunother 64(12):1587–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nan J, Xing YF, Hu B, Tang JX, Dong HM, He YM et al (2018) Endoplasmic reticulum stress induced LOX-1 + CD15 + polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology 154(1):144–155

    Article  CAS  PubMed  Google Scholar 

  7. Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L et al (2019) Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569(7754):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J et al (2018) A RIPK3-PGE2 Circuit Mediates Myeloid-Derived Suppressor Cell-Potentiated Colorectal Carcinogenesis. Cancer Res 78(19):5586–5599

    Article  CAS  PubMed  Google Scholar 

  9. Qiu P, Wang H, Zhang M, Zhang M, Peng R, Zhao Q et al (2020) FATP2-targeted therapies-A role beyond fatty liver disease. Pharmacol Res 161:105228

    Article  CAS  PubMed  Google Scholar 

  10. Park HH, Kim HR, Park SY, Hwang SM, Hong SM, Park S et al (2021) RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer 20(1):107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Evans AS, Coyne CB (2019) RIPK3: Beyond Necroptosis. Immunity 50(1):1–3

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura K, Smyth MJ (2020) Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 17(1):1–12

    Article  CAS  PubMed  Google Scholar 

  13. Li L, Yu R, Cai T, Chen Z, Lan M, Zou T et al (2020) Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol 88:106939

    Article  CAS  PubMed  Google Scholar 

  14. Sawa-Wejksza K, Kandefer-Szerszeń M (2018) Tumor-Associated Macrophages as Target for Antitumor Therapy. Arch Immunol Ther Exp (Warsz) 66(2):97–111

    Article  CAS  PubMed  Google Scholar 

  15. Mhaidly R, Mechta-Grigoriou F (2020) Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Semin Immunol 48:101417

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Sun H, Zhu N, Wu X, Sui Z, Gong L et al (2021) Myeloid-Derived Suppressor Cells in Immune Microenvironment Promote Progression of Esophagogastric Junction Adenocarcinoma. Front Oncol 11:640080

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Ye Y, Liu P, Yu W, Wei F, Li H et al (2017) Suppression of T cells by myeloid-derived suppressor cells in cancer. Hum Immunol 78(2):113–119

    Article  CAS  PubMed  Google Scholar 

  18. Qu J, Liu L, Xu Q, Ren J, Xu Z, Dou H et al (2019) CARD9 prevents lung cancer development by suppressing the expansion of myeloid-derived suppressor cells and IDO production. Int J Cancer 145(8):2225–2237

    Article  CAS  PubMed  Google Scholar 

  19. Ohl K, Tenbrock K (2018) Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Front Immunol 9:2499

    Article  PubMed  PubMed Central  Google Scholar 

  20. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP et al (2015) Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Rep 13(2):412–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang Q, Xie H, Li X, Feng Y, Xie S, Qu J et al (2021) Interferon Regulatory Factor 4 Regulates the Development of Polymorphonuclear Myeloid-Derived Suppressor Cells Through the Transcription of c-Myc in Cancer. Front Immunol 12:627072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodríguez-Ubreva J, Català-Moll F, Obermajer N, Álvarez-Errico D, Ramirez RN, Company C et al (2017) Prostaglandin E2 Leads to the Acquisition of DNMT3A-Dependent Tolerogenic Functions in Human Myeloid-Derived Suppressor Cells. Cell Rep 21(1):154–167

    Article  PubMed  Google Scholar 

  23. Veglia F, Hashimoto A, Dweep H, Sanseviero E, De Leo A, Tcyganov E et al (2021) Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J Exp Med 218(4):e20201803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adeshakin AO, Liu W, Adeshakin FO, Afolabi LO, Zhang M, Zhang G et al (2021) Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell Immunol 362:104286

    Article  CAS  PubMed  Google Scholar 

  25. Voloshyna I, Teboul I, Kasselman LJ, Salama M, Carsons SE, DeLeon J et al (2019) Macrophage lipid accumulation in the presence of immunosuppressive drugs mycophenolate mofetil and cyclosporin A. Inflamm Res 68(9):787–799

    Article  CAS  PubMed  Google Scholar 

  26. Arai R, Soda S, Okutomi T, Morita H, Ohmi F, Funakoshi T et al (2018) Lipid Accumulation in Peripheral Blood Dendritic Cells and Anticancer Immunity in Patients with Lung Cancer. J Immunol Res 2018:5708239

  27. Niavarani SR, Lawson C, Bakos O, Boudaud M, Batenchuk C, Rouleau S et al (2019) Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer 19(1):823

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao Q, Guo J, Cheng X, Liao Y, Bi Y, Gong Y et al (2021) RIPK3 Suppresses the Progression of Spontaneous Intestinal Tumorigenesis. Front Oncol 11:664927

    Article  PubMed  PubMed Central  Google Scholar 

  29. Conev NV, Dimitrova EG, Bogdanova MK, Kashlov YK, Chaushev BG, Radanova MA et al (2019) RIPK3 expression as a potential predictive and prognostic marker in metastatic colon cancer. Clin Invest Med 42(1):E31–E38

    Article  CAS  PubMed  Google Scholar 

  30. Riegger J, Brenner RE (2019) Evidence of necroptosis in osteoarthritic disease: investigation of blunt mechanical impact as possible trigger in regulated necrosis. Cell Death Dis 10(10):683

    Article  PubMed  PubMed Central  Google Scholar 

  31. Elwakeel E, Brüne B, Weigert A (2019) PGE2 in fibrosis and cancer: Insights into fibroblast activation. Prostaglandins Other Lipid Mediat 143:106339

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No.81902595) and Science and Technology Program of Guangzhou (No.202002030482).

Author information

Authors and Affiliations

Authors

Contributions

Xiaojun Shi and Wanlong Tan conceived of this study, collected data, and prepared the manuscript. Jie Sun, Shiyu Pang and Jiawei Zhou collected data, performed data analysis, and prepared the manuscript. Guang Yan and Wanlong Tan collected data and revised the manuscript.

Corresponding author

Correspondence to Xiaojun Shi.

Ethics declarations

Conflict of interest

The authors declare that have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of Nanfang hospital. All patients signed the approved consent forms. All experimental procedures were performed in accordance with the relevant laws and institutional guidelines of Southern Medical University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 Expressions of LOX-1, FATP2 and RIPK3 in human bladder tumor tissues.

Immunohistochemistry assays were performed to detect the expressions of LOX-1, FATP2 and RIPK3 in human tumor tissues with adjacent tissues as control (n = 18) (A: LOX-1; B: FATP2; C: RIPK3). (*P < 0.05)

Supplementary Fig. 2 The gating strategy used in Figs. 3, 4 and 5.

PMN-MDSCs were cocultured with CD8+ T cells, and flow cytometry was performed to detect the IFN-γ+CD8+ T cells.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Pang, S., Zhou, J. et al. Feedback loop between fatty acid transport protein 2 and receptor interacting protein 3 pathways promotes polymorphonuclear neutrophil myeloid-derived suppressor cells-potentiated suppressive immunity in bladder cancer. Mol Biol Rep 49, 11643–11652 (2022). https://doi.org/10.1007/s11033-022-07924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07924-x

Keywords

Navigation