Skip to main content
Log in

The first complete mitochondrial genome sequences for Ulidiidae and phylogenetic analysis of Diptera

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Tetanops sintenisi is a pest that mainly damages the root of quinoa (Chenopodium quinoa) and it is first discovered in China in 2018.

Methods and Results

Here, the complete mitochondrial genome (mitogenome) of T. sintenisi was sequenced and compared with the mitogenomes of other Diptera species. The results revealed that the mitogenome of T. sintenisi is 15,763 bp in length (GenBank accession number: MT795181) and is comprised of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA genes, and a non-coding A + T-rich region (959 bp). The highly conserved gene arrangement of the mitogenome of T. sintenisi was identical to that of other Diptera insects. Twelve PCGs contained the typical insect start codon ATN, while cox1 had CGA as the start codon. The genes cox2, nad4, and nad1 contained an incomplete termination codon T; nad3, nad5, and cob contained the complete termination codon TAG; and the remaining seven PCGs contained the termination codon TAA. All tRNA genes were predicted to fold into the typical cloverleaf secondary structure. Phylogenetic analysis of 48 species based on the mitogenome sequence revealed that T. sintenisi clustered with the Tephritidae family, indicating that T. sintenisi and Tephritidae have a close phylogenetic relationship.

Conclusions

The phylogenetic relationship of T. sintenisi based on the mitogenome is consistent with the traditional morphological taxonomy, according to which T. sintenisi belongs to the family Otitidae, which is closely related to the family Muscidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/genbank under the accession no. MT795181. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA757578, SRR15725549, and SAMN20968555, respectively.

References

  1. Zhang NX, Zhang YJ, Guo YU, Chen B (2013) Structure characteristics of the mitochondrial genomes of Diptera and design and application of universal primers for their sequencing. Acta Entomol Sin 56(4):398–407. https://doi.org/10.16380/j.kcxb.2013.04.013

    Article  CAS  Google Scholar 

  2. Li H, Li J (2019) The complete mitochondrial genome of Helophilus virgatus (Diptera: Syrphidae: Eristalinae) with a phylogenetic analysis of Syrphidae. Mitochondrial DNA Part B 4(2):3106–3107. https://doi.org/10.1080/23802359.2019.1667890

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yan W, Shang Y, Ren L, Zhang X, Wang Y (2019) The complete mitochondrial genome of Hydrotaea dentipes (Diptera: Muscidae). Mitochondrial DNA Part B 4(1):2044–2045. https://doi.org/10.1080/23802359.2019.1618217

    Article  Google Scholar 

  4. Zhang NX, Guo Y, Li TJ, He QY, Zhou Y, Si FL, Shuang R, Chen B, Yue BS (2015) The complete mitochondrial genome of Delia antiqua and its implications in Dipteran Phylogenetics. PLoS ONE 10(10):e0139736. https://doi.org/10.1371/journal.pone.0139736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choudhary JS, Naaz N, Prabhakar CS, Rao MS, Das B (2015) The mitochondrial genome of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae): complete DNA sequence, genome organization, and phylogenetic analysis with other tephritids using next generation DNA sequencing. Gene 569(2):191–202. https://doi.org/10.1016/j.gene.2015.05.066

    Article  CAS  PubMed  Google Scholar 

  6. Wang T, Ren YL, Zhong Y, Yang MF (2020) Sequencing and analysis of the complete mitochondrial genome of Bactrocera cheni from China and its phylogenetic analysis. Mitochondrial DNA Part B 5(1):780–781. https://doi.org/10.1080/23802359.2020.1715882

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mitchell SE, Cockburn AF, Seawright JA (1993) The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. Genome 36(6):1058–1073. https://doi.org/10.1139/g93-141

    Article  CAS  PubMed  Google Scholar 

  8. Spanos L, Koutroumbas G, Kotsyfakis M, Louis C (2010) The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata. Insect Mol Biol 9(2):139–144. https://doi.org/10.1046/j.1365-2583.2000.00165.x

    Article  Google Scholar 

  9. Lessinger AC, Junqueira A, Lemos TA, Kemper EL, Azeredo-Espin A (2010) The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae). Insect Mol Biol 9(5):521–529. https://doi.org/10.1046/j.1365-2583.2000.00215.x

    Article  Google Scholar 

  10. Stevens JR, West H, Wall R (2010) Mitochondrial genomes of the sheep blowfly, Lucilia sericata, and the secondary blowfly, Chrysomya megacephala. Med Vet Entomol 22(1):89–91. https://doi.org/10.1111/j.1365-2915.2008.00710.x

    Article  Google Scholar 

  11. Junqueira A, Lessinger AC, Torres TT, Silva F, Espin A (2004) The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). Gene 339(1):7–15. https://doi.org/10.1016/j.gene.2004.06.031

    Article  CAS  PubMed  Google Scholar 

  12. Beckenbach AT, Joy JB (2009) Evolution of the mitochondrial genomes of Gall midges (Diptera: Cecidomyiidae): rearrangement and severe truncation of tRNA genes. Genome Biol Evol 1(1):278–287. https://doi.org/10.1093/gbe/evp027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oliveira MT, Barau JG, Junqueira A, Feijo PC, Lessinger AC (2008) Structure and evolution of the mitochondrial genomes of Haematobia irritans and Stomoxys calcitrans: the Muscidae (Diptera: Calyptratae) perspective. Mol Phylogenet Evol 48(3):850–857. https://doi.org/10.1016/j.ympev.2008.05.022

    Article  CAS  PubMed  Google Scholar 

  14. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22(3):252–271. https://doi.org/10.1007/BF02099755

    Article  CAS  PubMed  Google Scholar 

  15. Smit JT (2005) De prachtvlieg Tetanops sintenisi nieuw voor Nederland (Diptera: Ulidiidae). Nederlandse Faunistische Mededelingen 22:91–94

    Google Scholar 

  16. Xing K, Fei Z, Zhao X, Hui Y, Zhou J, Hong L (2018) First report of root maggot Tetanops sintenisi on quinoa. China Plant Protection 38(12):38–40

    Google Scholar 

  17. Mortelmans J, Bree ED, Hendrix J (2012) Four new additions to the Belgian fauna (Diptera: Conopidae, Tabanidae, Sciomyzidae, Ulidiidae). Bull van de Koninklijke Belgische vereniging voor entomologie 148:193–196

    Google Scholar 

  18. Stuke JH, Merz B (2005) Drei für Deutschland neu nachgewiesene acalyptrate Fliegen (Diptera: Lauxaniidae, Pallopteridae, Ulidiidae). Studia Dipterologica 12:242–254

    Google Scholar 

  19. Stuke JH (2006) Bemerkenswerte Zweiflügler aus Niedersachsen und Bremen (Insecta: Diptera) – 1. Teil Drosera 12:67–72

    Google Scholar 

  20. Stuke JH (2008) Die Tephritoidea (Diptera) Niedersachsens und Bremens. Abh. Naturwiss Vereins Bremen 46(2):329–356

    Google Scholar 

  21. John TS, Gerrit T (2014) Een bijzondere vangst van een bijzondere prachtvlieg (Diptera, Ulidiidae). Entomol Berichten 74(6):261–263

    Google Scholar 

  22. Coil D, Jospin G, Darling AE (2014) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587–589. https://doi.org/10.1093/bioinformatics/btu661

    Article  CAS  PubMed  Google Scholar 

  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurtz S, Phillippy A, Delcher AL, Smoot M (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12. https://doi.org/10.1186/gb-2004-5-2-r12

    Article  PubMed  PubMed Central  Google Scholar 

  25. Walker BJ, Abeel T, Shea T, Priest M, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9(11):e112963. https://doi.org/10.1371/journal.pone.0112963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319. https://doi.org/10.1016/j.ympev.2012.08.023

    Article  PubMed  Google Scholar 

  27. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21(4):537–539. https://doi.org/10.1093/bioinformatics/bti054

    Article  CAS  PubMed  Google Scholar 

  28. Sudhir K, Glen S, Li M, Christina K, Koichiro T (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  Google Scholar 

  29. Nguyen LT, Schmidt HA, Haeseler AV, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  30. Narakusumo RP, Riedel A, Pons J (2020) Mitochondrial genomes of twelve species of hyperdiverse Trigonopterus weevils. PeerJ 8:e10017. https://doi.org/10.7717/peerj.10017

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lewis DL, Farr CL, Kaguni LS (2010) Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol Biol 4(4):263–278. https://doi.org/10.1111/j.1365-2583.1995.tb00032.x

    Article  Google Scholar 

  32. Nardi F, Carapelli A, Dallai R, Frati F (2003) The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Mol Biol 12(6):605–611. https://doi.org/10.1046/j.1365-2583.2003.00445.x

    Article  CAS  PubMed  Google Scholar 

  33. Brujn MHLD (1983) Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature 304(5923):234–241. https://doi.org/10.1038/304234a0

    Article  Google Scholar 

  34. Kim I, Lee EM, Seol KY, Yun EY, Jin BR (2010) The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Mol Biol 15(2):217–225. https://doi.org/10.1111/j.1365-2583.2006.00630.x

    Article  CAS  Google Scholar 

  35. Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2005) Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis. Int J Biol Sci 1(1):13–18. https://doi.org/10.7150/ijbs.1.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang JP, Cao TW, Zhang Y, Fan RJ, Zhang M, Shi BM, Peng FC (2017) Sequencing and analysis of the complete mitochondrial genome of Limenitis helmanni (Lepidoptera: Nymphalidae). Acta Entomol Sin 60(8):950–961. https://doi.org/10.16380/j.kcxb.2017.08.012

    Article  Google Scholar 

  37. Li T, Yang J, Li Y, Cui Y, Xie Q, Bu W, Hillis DM (2016) A mitochondrial genome of Rhyparochromidae (Hemiptera: Heteroptera) and a comparative analysis of related mitochondrial genomes. Sci Rep 6:35175. https://doi.org/10.1038/srep35175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun H, Zhao W, Lin R, Zhou Z, Huai W, Yao Y (2020) The conserved mitochondrial genome of the jewel beetle (Coleoptera: Buprestidae) and its phylogenetic implications for the suborder Polyphaga. Genomics 112(5):3713–3721. https://doi.org/10.1016/j.ygeno.2020.04.026

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira M, Lessinger AC (2005) Evolutionary and structural analysis of the cytochrome c oxidase subunit I (COI) gene from, and (Diptera: Muscidae) mitochondrial DNA. Mitochondrial DNA Part A 16(2):156–160. https://doi.org/10.1080/10425170500039901

    Article  CAS  Google Scholar 

  40. Yang F, Du YZ, Wang LP, Cao JM, Yu WW (2011) The complete mitochondrial genome of the leafminer Liriomyza sativae (Diptera: Agromyzidae): great difference in the A + T-rich region compared to Liriomyza trifolii. Gene 485(1):7–15. https://doi.org/10.1016/j.gene.2011.05.030

    Article  CAS  PubMed  Google Scholar 

  41. Jin SB, Kim I, Sohn HD, Jin BR (2004) The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol Phylogenet Evol 32(3):978–985. https://doi.org/10.1016/j.ympev.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  42. Yue Z, Feng S, Zeng Y, Hong N, Liu L, Zhao Z, Fan J, Li Z (2018) The first complete mitochondrial genome of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) by next-generation sequencing and its phylogenetic implications. Int J Biol Macromol 118(15):1229–1237. https://doi.org/10.1016/j.ijbiomac.2018.06.099

    Article  CAS  Google Scholar 

  43. Su Y, Zhang Y, Feng S, He J, Zhao Z, Bai Z, Liu L, Zhang R, Li Z (2017) The mitochondrial genome of the wolfberry fruit fly, Neoceratitis asiatica (Becker) (Diptera: Tephritidae) and the phylogeny of Neoceratitis Hendel genus. Sci Rep 7(1):16612. https://doi.org/10.1038/s41598-017-16929-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ojala D, Montoya J, Attardi G (1981) Trna punctuation model of rna processing in human mitochondria. Nature 290(5806):470–474. https://doi.org/10.1038/290470a0

    Article  CAS  PubMed  Google Scholar 

  45. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25(2):99–120. https://doi.org/10.1016/S0305-1978(96)00042-7

    Article  Google Scholar 

  46. Brian MW, Michelle DT, Isaac SW, Norman BB, Jung-Wook K, Christine L, Matthew AB, Brian KC, Keith MB, Alysha MH, Benjamin MW, Kevin JP, Thomas P, Bradley JS, Jeffrey HS, Vladimir B, Jason C, Sujatha NK, Urs S-O, Gail EK, Christian F, David T, Andrew AG, Gregory TB, Markus WC, Rudolf F, David M KY (2011) Episodic radiations in the fly tree of life. PNAS 108(14):5690–5695. https://doi.org/10.1073/pnas.1012675108

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wenna Wang for assistance in completing the experiments. This research was financially supported by the construction of modern agricultural (coarse cereals) industrial technology system in Shanxi Province (2022-03), the Foundation of Shanxi Academy of Agricultural Sciences (YCX2018D2T02) and the Province Key Research and Development Program of Shanxi (201903D221014).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K.X.; Formal analysis, K.X. and C.K.; Funding acquisition, F.Z.; Methodology, K.X and C.K.; Project administration, F.Z.; Writing-original draft, K.X. and C.K.; Writing-review and editing, X.J.Z and F.Z. All authors have read and agreed to the published version of the manuscript. Conflict of interest The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Corresponding author

Correspondence to Fei Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, K., Kang, C. & Zhao, F. The first complete mitochondrial genome sequences for Ulidiidae and phylogenetic analysis of Diptera. Mol Biol Rep 50, 2501–2510 (2023). https://doi.org/10.1007/s11033-022-07869-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07869-1

Keywords

Navigation