Skip to main content

Advertisement

Log in

Thymol has anticancer effects in U-87 human malignant glioblastoma cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Thymol (2-isopropyl-5-methylphenol) is a colorless crystalline derivative of cymene, that possesses pleotropic pharmacological properties, including analgesic, antibacterial, antispasmodic, and anti-inflammatory activities. Thymol has also been recognized for its beneficial effect as an anti-tumor agent, but the precise mechanism for this has not been fully elucidated. We aimed to identifying whether thymol exerts anti-cancer activity in human U-87 malignant glioblastoma (GB) cells (U-87).

Methods and Results

Cell viability and apoptosis was evaluated in U-87 cells treated with thymol at different concentrations. Reactive oxygen species (ROS) production, mRNA expressions of apoptosis-related genes and cell cycle characteristics were assessed. The cytotoxic activity of the co-exposure of thymol and temozolomide (TMZ) was also evaluated. The half-maximal inhibitory concentration (IC50) of thymol in the U-87 cells was 230 μM assessed at 24 h after exposure. Thymol did not exhibit any cytotoxic effects on normal L929 cells at this concentration. Thymol treatment increased the expression of Bax and p53, and also increased apoptotic cell death, and excessive generation of ROS. Moreover, the cytotoxic activity of thymol on the U-87 cells may be related to the arrest of the cell cycle at the G0/G1 interface. Combination therapy showed that the cytotoxic effects of thymol synergized with TMZ, and combined treatment had more cytotoxic potential compared to either of the agents alone.

Conclusions

Our data indicate the potential cytotoxic activities of thymol on U-87 cells. Further studies are required to evaluate the spectrum of the antitumor activity of thymol on GB cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Ostrom QT et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom QT et al (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 22(12 Suppl 2):iv1–iv96

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maghrouni A et al (2021) Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: preclinical evidence and clinical interventions. Int Immunopharmacol 93:107403

    Article  CAS  PubMed  Google Scholar 

  4. Sanati M et al (2022) How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol Rep. https://doi.org/10.1007/s43440-021-00349-6

    Article  PubMed  Google Scholar 

  5. Wu W et al (2021) Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res 171:105780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Afshari AR et al (2021) Neurokinin-1 receptor (NK-1R) antagonists: potential targets in the treatment of glioblastoma multiforme. Curr Med Chem 28(24):4877–4892

    Article  CAS  PubMed  Google Scholar 

  7. Patel V, Shah J (2021) The current and future aspects of glioblastoma: immunotherapy a new hope? Eur J Neurosci 54(3):5120–5142

    Article  PubMed  Google Scholar 

  8. Afshari AR et al (2020) Modulation of calcium signaling in glioblastoma multiforme: a therapeutic promise for natural products. Mini Rev Med Chem 20(18):1879–1899

    Article  CAS  PubMed  Google Scholar 

  9. Bibak B et al (2022) Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem. https://doi.org/10.2174/0929867329666220224112811

    Article  PubMed  Google Scholar 

  10. Jalili-Nik M et al (2020) Zerumbone promotes cytotoxicity in human malignant glioblastoma cells through reactive oxygen species (ROS) generation. Oxidative Med Cell Longev. https://doi.org/10.1155/2020/3237983

    Article  Google Scholar 

  11. Sahab-Negah S et al (2020) Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: an in vitro study. Mol Neurobiol 57(8):3391–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bagherniya M et al (2022) The effects of phytochemicals and herbal bio-active compounds on tumour necrosis factor-α in overweight and obese individuals: a clinical review. Inflammopharmacology. https://doi.org/10.1007/s10787-021-00902-y

    Article  PubMed  Google Scholar 

  13. Luthra R, Roy A (2022) Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol 23(1):123–139

    Article  PubMed  Google Scholar 

  14. Jalili-Nik M et al (2018) Current status and future prospective of Curcumin as a potential therapeutic agent in the treatment of colorectal cancer. J Cell Physiol 233(9):6337–6345

    Article  CAS  PubMed  Google Scholar 

  15. Soltani A et al (2019) 5′-Adenosine monophosphate-activated protein kinase: a potential target for disease prevention by curcumin. J Cell Physiol 234(3):2241–2251

    Article  CAS  PubMed  Google Scholar 

  16. Nagoor Meeran MF et al (2017) Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol 8:380

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yanishlieva NV et al (1999) Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64(1):59–66

    Article  CAS  Google Scholar 

  18. Karpanen TJ et al (2008) Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J Antimicrob Chemother 62(5):1031–1036

    Article  CAS  PubMed  Google Scholar 

  19. Li Y et al (2017) Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis. Biochem Biophys Res Commun 491(2):530–536

    Article  CAS  PubMed  Google Scholar 

  20. De La Chapa JJ et al (2018) Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J Oral Pathol Med 47(7):674–682

    Article  Google Scholar 

  21. Lv R, Chen Z (2017) Thymol inhibits cell migration and invasion by downregulating the activation of PI3K/AKT and ERK pathways in human colon cancer cells. Trop J Pharm Res 16(12):2895–2901

    Article  CAS  Google Scholar 

  22. Amirfakhri S, Salimi A, Fernandez N (2015) Effects of conditioned medium from breast cancer cells on Tlr2 expression in Nb4 cells. Asian Pac J Cancer Prev 16(18):8445–8450

    Article  PubMed  Google Scholar 

  23. Lee KP et al (2016) Regulation of C6 glioma cell migration by thymol. Oncol Lett 11(4):2619–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soltani A et al (2021) Application of molecular docking for the development of improved HIV-1 reverse transcriptase inhibitors. Current Comput 17(4):538–549

    CAS  Google Scholar 

  25. International Organization for Standardization, 1992 ISO 10993–5. In Biological Evaluation of Medical Devices-Part 5. Tests for Cytotoxicity: In vitro Methods; ISO: Geneve, Switzerland

  26. Schedle A et al (1995) Response of L-929 fibroblasts, human gingival fibroblasts, and human tissue mast cells to various metal cations. J Dent Res 74(8):1513–1520

    Article  CAS  PubMed  Google Scholar 

  27. Aydın E et al (2017) Anticancer, antioxidant and cytotoxic potential of thymol in vitro brain tumor cell model. Central Nerv Syst Agents Med Chem 17(2):116–122

    Google Scholar 

  28. Girola N et al (2015) Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem Biophys Res Commun 467(4):928–934

    Article  CAS  PubMed  Google Scholar 

  29. Özkan A, Erdoğan A (2011) A comparative evaluation of antioxidant and anticancer activity of essential oil from origanum onites (Lamiaceae) and its two major phenolic components. Turk J Biol 35(6):735–742

    Google Scholar 

  30. Elbe H et al (2020) Comparison of ultrastructural changes and the anticarcinogenic effects of thymol and carvacrol on ovarian cancer cells: which is more effective? Ultrastruct Pathol 44(2):193–202

    Article  CAS  PubMed  Google Scholar 

  31. Deb DD et al (2011) Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact 193(1):97–106

    Article  PubMed  Google Scholar 

  32. Michaud-Levesque J, Bousquet-Gagnon N, Béliveau R (2012) Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp Cell Res 318(8):925–935

    Article  CAS  PubMed  Google Scholar 

  33. Huang H et al (2012) Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway. Oncol Rep 27(6):2050–2056

    CAS  PubMed  Google Scholar 

  34. Fiore G et al (2006) In vitro antiproliferative effect of six Salvia species on human tumor cell lines. Phytother Res 20(8):701–703

    Article  PubMed  Google Scholar 

  35. Eom KS et al (2010) Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction. Biol Pharm Bull 33(10):1644–1649

    Article  CAS  PubMed  Google Scholar 

  36. Gomez-Manzano C et al (1997) Characterization of p53 and p21 functional interactions in glioma cells en route to apoptosis. J Natl Cancer Inst 89(14):1036–1044

    Article  CAS  PubMed  Google Scholar 

  37. Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6(3):a026104–a026104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Riley T et al (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412

    Article  CAS  PubMed  Google Scholar 

  39. Daniele S et al (2018) Bax activation blocks self-renewal and induces apoptosis of human glioblastoma stem cells. ACS Chem Neurosci 9(1):85–99

    Article  CAS  PubMed  Google Scholar 

  40. Balan DJ et al (2021) Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells. Pharmacol Rep 73(1):240–254

    Article  CAS  PubMed  Google Scholar 

  41. Zeng Q et al (2020) Thymol isolated from thymus vulgaris l. Inhibits colorectal cancer cell growth and metastasis by suppressing the wnt/β-catenin pathway. Drug Des 14:2535

    CAS  Google Scholar 

  42. Jaafari A et al (2012) Comparative study of the antitumor effect of natural monoterpenes: relationship to cell cycle analysis. Rev Bras 22(3):534–540

    CAS  Google Scholar 

  43. Kang S-H et al (2016) Anticancer effect of thymol on AGS human gastric carcinoma cells. J Microbiol Biotechnol 26(1):28–37

    Article  CAS  PubMed  Google Scholar 

  44. Zhang WB et al (2010) Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem 285(52):40461–40471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Satooka H, Kubo I (2012) Effects of thymol on B16–F10 melanoma cells. J Agric Food Chem 60(10):2746–2752

    Article  CAS  PubMed  Google Scholar 

  46. Shettigar NB et al (2015) Thymol, a monoterpene phenolic derivative of cymene, abrogates mercury-induced oxidative stress resultant cytotoxicity and genotoxicity in hepatocarcinoma cells. Environ Toxicol 30(8):968–980

    Article  CAS  PubMed  Google Scholar 

  47. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418

    Article  CAS  PubMed  Google Scholar 

  48. Matés JM et al (2008) Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 82(5):273–299

    Article  PubMed  Google Scholar 

  49. Soltani A et al (2019) The comparative study of the effects of Fe2O3 and TiO2 micro- and nanoparticles on oxidative states of lung and bone marrow tissues and colony stimulating factor secretion. J Cell Biochem 120(5):7573–7580

    Article  CAS  Google Scholar 

  50. Yoshida K, Miki Y (2010) The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci 101(4):831–835

    Article  CAS  PubMed  Google Scholar 

  51. NavaneethaKrishnan S, Rosales JL, Lee K-Y (2019) ROS-mediated cancer cell killing through dietary phytochemicals. Oxidative Med Cell Longev. https://doi.org/10.1155/2019/9051542

    Article  Google Scholar 

Download references

Acknowledgements

We thankful from Mr. M. Jalili for kind cooperation. We appreciate the assistance of the Clinical Research Development Unit of Imam Reza hospital and Akbar Hospital, Mashhad University of Medical Sciences, in conducting this research.

Funding

This study supported by Vice-Chancellor for Research and Technology, Mashhad University of Medical Sciences, Iran (code: 4001891).

Author information

Authors and Affiliations

Authors

Contributions

AB: Methodology, Conceptualization, Formal analysis, Validation, Funding acquisition, Writing—original draft. FQ: Formal analysis, Validation, Writing—review & editing. NH: Methodology, Formal analysis, Validation. AS: Resources, Supervision, Writing—review & editing. SA: Methodology, Formal analysis, Validation. FS: Validation, Writing—review & editing. AT: Resources, Supervision, Writing—review & editing. AA Methodology, Formal analysis, Validation. GF: Supervision, review & editing. All Authors read and confirmed the manuscript.

Corresponding author

Correspondence to Afsane Bahrami.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The study was approved by the Deputy of Research and Technology and Ethics Committee of Mashhad University of Medical Sciences (IR.MUMS.MEDICAL.REC.1401.184).

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qoorchi Moheb Seraj, F., Heravi-Faz, N., Soltani, A. et al. Thymol has anticancer effects in U-87 human malignant glioblastoma cells. Mol Biol Rep 49, 9623–9632 (2022). https://doi.org/10.1007/s11033-022-07867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07867-3

Keywords

Navigation