Skip to main content
Log in

Identification of GmGPATs and their effect on glycerolipid biosynthesis through seed-specific expression in soybean

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Genetic improvement of soybean oil content depends on in-depth study of the glycerolipid biosynthesis pathway. The first acylation reaction catalysed by glycerol-3-phosphate acyltransferase (GPAT) is the rate-limiting step of triacylglycerol biosynthesis. However, the genes encoding GPATs in soybean remain unknown.

Methods

We used a novel yeast genetic complementation system and seed-specific heterologous expression to identify GmGPAT activity and molecular function in glycerolipid biosynthesis.

Results

Sixteen GmGPAT genes were cloned by reverse transcription-PCR for screening in yeast genetic complementation. The results showed that GmGPAT9-2 could restore the conditional lethal double knockout mutant strain ZAFU1, and GmGPAT1-1 exhibited low acyltransferase activity in serial dilution assays. In addition, the spatiotemporal expression pattern of GmGPAT9-2 exhibited tissue specificity in leaves, flowers and seeds at different developmental stages. Furthermore, both the proportion of arachidic acid and erucic acid were significantly elevated in Arabidopsis thaliana transgenic lines containing the seed-specific GmGPAT9-2 compared wild type, but the oil content was not affected.

Conclusion

Together, our results provide reference data for future engineering of triacylglycerol biosynthesis and fatty acid composition improvement through GPATs in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data that support this study are available in the article and accompanying online supplementary material.

References

  1. Feng L, Burton JW, Carter TE, Pantalone VR (2004) Recurrent half-sib selection with testcross evaluation for increased oil content in soybean. Crop Sci 44:63–66. https://doi.org/10.2135/cropsci2004.6300

    Article  Google Scholar 

  2. Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J 13:211–221. https://doi.org/10.1111/pbi.12249

    Article  CAS  PubMed  Google Scholar 

  3. Sedivy EJ, Wu F, Hanzawa Y (2017) Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol 214:539–553. https://doi.org/10.1111/nph.14418

    Article  PubMed  Google Scholar 

  4. Wendel AA, Lewin TM, Coleman RA (2009) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791:501–506. https://doi.org/10.1016/j.bbalip.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  5. Shen Y, Liu J, Geng H, Zhang J, Liu Y, Zhang H, Xing S, Du J, Ma S, Tian Z (2018) De novo assembly of a Chinese soybean genome. Sci China Life Sci 61:871–884. https://doi.org/10.1007/s11427-018-9360-0

    Article  CAS  PubMed  Google Scholar 

  6. Xie M, Chung CYL, Li MW, Wong FL, Wang X, Liu A, Wang Z, Leung AKY, Wong TH, Tong SW, Xiao Z, Fan K, Ng MS, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM (2019) A reference-grade wild soybean genome. Nat Commun 10:1216. https://doi.org/10.1038/s41467-019-09142-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z (2020) Pan-genome of wild and cultivated soybeans. Cell 182:162–176. https://doi.org/10.1016/j.cell.2020.05.023

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wan W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414. https://doi.org/10.1038/nbt.3096

    Article  CAS  PubMed  Google Scholar 

  9. Zhang D, Zhang H, Hu Z, Chu S, Yu K, Lv L, Yang Y, Zhang X, Chen X, Kan G, Tang Y, An YQC, Yu D (2019) Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. PLoS Genet 15:e1008267. https://doi.org/10.1371/journal.pgen.1008267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li R, Hatanaka T, Yu K, Wu Y, Fukushige H, Hildebrand D (2013) Soybean oil biosynthesis: role of diacylglycerol acyltransferases. Funct Integr Genomic 13:99–113. https://doi.org/10.1007/s10142-012-0306-z

    Article  CAS  Google Scholar 

  11. Roesler K, Shen B, Bermudez E, Li C, Hunt J, Damude HG, Ripp KG, Everard JD, Booth JR, Castaneda L (2016) An improved variant of soybean type 1 diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Physiol 171:878–893. https://doi.org/10.1104/pp.16.00315

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hatanaka T, Serson W, Li RZ, Armstrong P, Yu KS, Pfeiffer T, Li XL, Hildebrand D (2016) A Vernonia diacylglycerol acyltransferase can increase renewable oil production. J Agric Food Chem 64:7188–7194. https://doi.org/10.1021/acs.jafc.6b02498

    Article  CAS  PubMed  Google Scholar 

  13. Hatanaka T, Tomita Y, Matsuoka D, Sasayama D, Fukayama H, Azuma T, Soltani Gishini MF, Hildebrand D (2022) Different acyl-CoA: diacylglycerol acyltransferases vary widely in function, and a targeted amino acid substitution enhances oil accumulation. J Exp Bot 73:3030–3043. https://doi.org/10.1093/jxb/erac084

    Article  PubMed  Google Scholar 

  14. Chen G, Xu Y, Siloto RMP, Caldo KMP, Vanhercke T, Tahchy AE, Niesner N, Chen Y, Mietkiewska E, Weselake RJ (2017) High-performance variants of plant diacylglycerol acyltransferase 1 generated by directed evolution provide insights into structure function. Plant J 92:167–177. https://doi.org/10.1111/tpj.13652

    Article  CAS  PubMed  Google Scholar 

  15. McIntyre TM, Chamberlain BK, Webster RE, Bell RM (1977) Mutants of Escherichia coli defective in membrane phospholipid synthesis. Effects of cessation and reinitiation of phospholipid synthesis on macromolecular synthesis and phospholipid turnover. J Biol Chem 252:4487–4493. https://doi.org/10.1128/jb.120.1.227-233.1974

    Article  CAS  PubMed  Google Scholar 

  16. Lindner SE, Sartain MJ, Hayes K, Harupa A, Moritz RL, Kappe SHI, Vaughan AM (2014) Enzymes involved in plastid-targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver-stage development. Mol Microbiol 91:679–693. https://doi.org/10.1111/mmi.12485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872–1887. https://doi.org/10.1105/tpc.012427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ (2011) Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol 155:851–865. https://doi.org/10.1104/pp.110.169482

    Article  CAS  PubMed  Google Scholar 

  19. Lei J, Miao Y, Lan Y, Han X, Liu H, Gan Y, Niu L, Wang Y, Zheng Z (2018) A novel complementation assay for quick and specific screen of genes encoding glycerol-3-phosphate acyltransferases. Front Plant Sci 9:353. https://doi.org/10.3389/fpls.2018.00353

    Article  PubMed  PubMed Central  Google Scholar 

  20. Livak KJ, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  21. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

    Article  CAS  PubMed  Google Scholar 

  22. Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res 51:635–640. https://doi.org/10.1194/jlr.D001065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771. https://doi.org/10.1021/bi982805d

    Article  CAS  PubMed  Google Scholar 

  24. Caldo KMP, Acedo JZ, Panigrahi R, Vederas JC, Weselake RJ, Lemieux MJ (2017) Diacylglycerol acyltransferase 1 is regulated by its N-terminal domain in response to allosteric effectors. Plant Physiol 175:667–680. https://doi.org/10.1104/pp.17.00934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morlino GB, Tizzani L, Fleer R, Frontali L, Bianchi MM (1999) Inducible amplification of gene copy number and heterologous protein production in the yeast kluyveromyces lactis. Appl Environ Microb 65:4808–4813. https://doi.org/10.1128/AEM.65.11.4808-4813.1999

    Article  CAS  Google Scholar 

  26. Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant Protein Production in Yeasts. In: Lorence A (ed) Recombinant Gene Expression, Method Mol Biol, 824. Humana Press, Totowa, pp 329–358. https://doi.org/10.1007/978-1-61779-433-9_17

    Chapter  Google Scholar 

  27. Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652. https://doi.org/10.1104/pp.112.201996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gan Y, Song Y, Chen YD, Liu H, Yang DD, Xu Q, Zheng Z (2018) Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr. BMC Plant Biol 18:303. https://doi.org/10.1186/s12870-018-1525-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32071929, 32100209), Natural Science Foundation of Zhejiang Province (LY21C130001, Q21C020003) and Scientific Research Foundation of Zhejiang A and F University (2021FR044).

Author information

Authors and Affiliations

Authors

Contributions

HL and PC conceived the research plan. LW completed most of the experiments. HL, LW and YG participated in the data analysis. JZ, BZ and YZ participated in the screening of yeast genetic complementation and transformant construction. HL and LW wrote the manuscript with input from all the authors. All authors reviewed and approved the submitted version.

Corresponding author

Correspondence to Hongbo Liu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wei, L., Zhu, J. et al. Identification of GmGPATs and their effect on glycerolipid biosynthesis through seed-specific expression in soybean. Mol Biol Rep 49, 9585–9592 (2022). https://doi.org/10.1007/s11033-022-07852-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07852-w

Keywords

Navigation