Skip to main content

Advertisement

Log in

Identification of proline-rich protein 11 as a major regulator in mouse spermatogonia maintenance via an increase in BMI1 protein stability

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Spermatogenesis accompanied by self-renewal and differentiation of spermatogonia under complicated regulation is crucial for male fertility. Our previous study demonstrated that the loss of the B-lymphoma Mo-MLV insertion region 1 (BMI1) could cause male infertility and found a potential interaction between BMI1 and proline-rich protein 11 (PRR11); however, the specific co-regulatory effects of BMI1/PRR11 on spermatogonia maintenance remain unclear.

Methods and results

The expression of PRR11 was downregulated in a mouse spermatogonia cell line (GC-1) via transfection with PRR11-siRNAs, and PRR11 knockdown was verified by real-time reverse transcriptase polymerase chain reaction (RT-qPCR). The proliferative activity of GC-1 cells was determined using the cell counting kit (CCK-8), colony formation, and 5-ethynyl-2-deoxyuridine (EdU) incorporation assay. A Transwell assay was performed to evaluate the effects of PRR11 on GC-1 cell migration. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to measure GC-1 cell apoptosis. Furthermore, co-immunoprecipitation, RT-qPCR, and western blot analyses were used for investigating the regulatory mechanisms involved in this regulation. It was found that downregulation of PRR11 could cause a marked inhibition of proliferation and migration and induced apoptosis in GC-1 cells. Moreover, silencing of PRR11 obviously led to a reduction in the BMI1 protein level. PRR11 was found to interact with BMII at the endogenous protein level. PRR11 knockdown produced a decrease in BMI1 protein stability via an increase in BMI1 ubiquitination after which derepression in the transcription of protein tyrosine phosphatase receptor type M (Ptprm) occurred. Importantly, knockdown of Ptprm in PRR11-deficient GC-1 cells led to a reversal of proliferation and migration of GC-1 cells.

Conclusions

This study uncovered a novel mechanism by which PRR11 cooperated with BMI1 to facilitate GC-1 maintenance through targeting Ptprm. Our findings may provide a better understanding of the regulatory network in spermatogonia maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Agarwal A, Mulgund A, Hamada A, Chyatte MR (2015) A unique view on male infertility around the globe. Reprod Biol Endocrinol 13:37

    PubMed  PubMed Central  Google Scholar 

  2. Anawalt BD (2013) Approach to male infertility and induction of spermatogenesis. J Clin Endocrinol Metab 98:3532–3542

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Neto FT, Bach PV, Najari BB, Li PS, Goldstein M (2016) Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 59:10–26

    PubMed  Google Scholar 

  4. Chevallier D, Carette D, Segretain D, Gilleron J, Pointis G (2013) Connexin 43 a check-point component of cell proliferation implicated in a wide range of human testis diseases. Cell Mol Life Sci 70:1207–1220

    CAS  PubMed  Google Scholar 

  5. Wang H, Wen L, Yuan Q, Sun M, Niu M, He Z (2016) Establishment and applications of male germ cell and Sertoli cell lines. Reproduction 152:R31-40

    CAS  PubMed  Google Scholar 

  6. Song W, Tao K, Li H, Jin C, Song Z, Li J, Shi H, Li X, Dang Z, Dou K (2010) Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci 101:1754–1760

    CAS  PubMed  Google Scholar 

  7. Chen MK, Zhou JH, Wang P, Ye YL, Liu Y, Zhou JW, Chen ZJ, Yang JK, Liao DY, Liang ZJ, Xie X, Zhou QZ, Xue KY, Guo WB, Xia M, Bao JM, Yang C, Duan HF, Wang HY, Huang ZP, Qin ZK, Liu CD (2021) BMI1 activates P-glycoprotein via transcription repression of miR-3682-3p and enhances chemoresistance of bladder cancer cell. Aging 13:18310–18330

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai X, Zhang Q, Yu Z, Sun W, Wang R, Miao D (2018) Bmi1 deficient mice exhibit male infertility. Int J Biol Sci 14:358–368

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu J, Shen C, Lin M, Chen X, Dai X, Li Z, Wu Y, Fu Y, Lv J, Huang X, Zheng B, Sun F (2022) BMI1 promotes spermatogonial stem cell maintenance by epigenetically repressing Wnt10b/beta-catenin signaling. Int J Biol Sci 18:2807–2820

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang K, Xu J, Ding Y, Shen C, Lin M, Dai X, Zhou H, Huang X, Xue B, Zheng B (2021) BMI1 promotes spermatogonia proliferation through epigenetic repression of Ptprm. Biochem Biophys Res Commun 583:169–177

    CAS  PubMed  Google Scholar 

  11. Lin C, Xia J, Gu Z, Meng Y, Gao D, Wei S (2020) Downregulation of USP34 inhibits the growth and migration of pancreatic cancer cells via inhibiting the PRR11. OncoTargets Ther 13:1471–1480

    CAS  Google Scholar 

  12. Lee KM, Guerrero-Zotano AL, Servetto A, Sudhan DR, Lin CC, Formisano L, Jansen VM, González-Ericsson P, Sanders ME, Stricker TP, Raj G, Dean KM, Fiolka R, Cantley LC, Hanker AB, Arteaga CL (2020) Proline rich 11 (PRR11) overexpression amplifies PI3K signaling and promotes antiestrogen resistance in breast cancer. Nat Commun 11:5488

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou H, Shen C, Guo Y, Huang X, Zheng B, Wu Y (2022) The plasminogen receptor directs maintenance of spermatogonial stem cells by targeting BMI1. Mol Biol Rep. https://doi.org/10.1007/s11033-022-07289-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zheng Q, Chen X, Qiao C, Wang M, Chen W, Luan X, Yan Y, Shen C, Fang J, Hu X, Zheng B, Wu Y, Yu J (2021) Somatic CG6015 mediates cyst stem cell maintenance and germline stem cell differentiation via EGFR signaling in Drosophila testes. Cell Death Discov 7:68

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang M, Chen X, Wu Y, Zheng Q, Chen W, Yan Y, Luan X, Shen C, Fang J, Zheng B, Yu J (2020) RpS13 controls the homeostasis of germline stem cell niche through Rho1-mediated signals in the Drosophila testis. Cell Prolif 53:e12899

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu J, Yan Y, Luan X, Qiao C, Liu Y, Zhao D, Xie B, Zheng Q, Wang M, Chen W, Shen C, He Z, Hu X, Huang X, Li H, Shao Q, Chen X, Zheng B, Fang J (2019) Srlp is crucial for the self-renewal and differentiation of germline stem cells via RpL6 signals in Drosophila testes. Cell Death Dis 10:294

    PubMed  PubMed Central  Google Scholar 

  17. Zhou J, Li J, Qian C, Qiu F, Shen Q, Tong R, Yang Q, Xu J, Zheng B, Lv J, Hou J (2022) LINC00624/TEX10/NF-kappaB axis promotes proliferation and migration of human prostate cancer cells. Biochem Biophys Res Commun 601:1–8

    CAS  PubMed  Google Scholar 

  18. Wang Q, Wu Y, Lin M, Wang G, Liu J, Xie M, Zheng B, Shen C, Shen J (2022) BMI1 promotes osteosarcoma proliferation and metastasis by repressing the transcription of SIK1. Cancer Cell Int 22:136

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu J, Wu Y, Li H, Zhou H, Shen C, Gao T, Lin M, Dai X, Ou J, Liu M, Huang X, Zheng B, Sun F (2021) BMI1 drives steroidogenesis through epigenetically repressing the p38 MAPK pathway. Front Cell Dev Biol 9:665089

    PubMed  PubMed Central  Google Scholar 

  20. Zhao D, Shen C, Gao T, Li H, Guo Y, Li F, Liu C, Liu Y, Chen X, Zhang X, Wu Y, Yu Y, Lin M, Yuan Y, Huang X, Yang S, Yu J, Zhang J, Zheng B (2019) Myotubularin related protein 7 is essential for the spermatogonial stem cell homeostasis via PI3K/AKT signaling. Cell Cycle 18:2800–2813

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng B, Yu J, Guo Y, Gao T, Shen C, Zhang X, Li H, Huang X (2018) Cellular nucleic acid-binding protein is vital to testis development and spermatogenesis in mice. Reproduction 156:59–69

    CAS  PubMed  Google Scholar 

  22. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D (2020) Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci USA 117:1496–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Weng G, Wang E, Wang Z, Liu H, Zhu F, Li D, Hou T (2019) HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res 47:W322–W330

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou F, Liu H, Zhang X, Shen Y, Zheng D, Zhang A, Lai Y, Li H (2014) Proline-rich protein 11 regulates epithelial-to-mesenchymal transition to promote breast cancer cell invasion. Int J Clin Exp Pathol 7:8692–8699

    PubMed  PubMed Central  Google Scholar 

  25. Song Z, Liu W, Xiao Y, Zhang M, Luo Y, Yuan W, Xu Y, Yu G, Hu Y (2015) PRR11 is a prognostic marker and potential oncogene in patients with gastric cancer. PLoS ONE 10:e0128943

    PubMed  PubMed Central  Google Scholar 

  26. Zhou L, Deng ZZ, Li HY, Jiang N, Wei ZS, Hong MF, Wang JH, Zhang MX, Shi YH, Lu ZQ, Huang XM (2019) Overexpression of PRR11 promotes tumorigenic capability and is associated with progression in esophageal squamous cell carcinoma. OncoTargets Ther 12:2677–2693

    CAS  Google Scholar 

  27. Zhang C, Zhang Y, Li Y, Zhu H, Wang Y, Cai W, Zhu J, Ozaki T, Bu Y (2015) PRR11 regulates late-S to G2/M phase progression and induces premature chromatin condensation (PCC). Biochem Biophys Res Commun 458:501–508

    CAS  PubMed  Google Scholar 

  28. Chen J, Yang HM, Zhou HC, Peng RR, Niu ZX, Kang CY (2020) PRR11 and SKA2 promote the proliferation, migration and invasion of esophageal carcinoma cells. Oncol Lett 20:639–646

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu S, Yan M, Ge R, Cheng CY (2020) Crosstalk between Sertoli and germ cells in male fertility. Trends Mol Med 26:215–231

    CAS  PubMed  Google Scholar 

  30. Zhou Q, Guo Y, Zheng B, Shao B, Jiang M, Wang G, Zhou T, Wang L, Zhou Z, Guo X, Huang X (2015) Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells. J Cell Mol Med 19:521–534

    CAS  PubMed  Google Scholar 

  31. Zheng B, Zhou Q, Guo Y, Shao B, Zhou T, Wang L, Zhou Z, Sha J, Guo X, Huang X (2014) Establishment of a proteomic profile associated with gonocyte and spermatogonial stem cell maturation and differentiation in neonatal mice. Proteomics 14:274–285

    CAS  PubMed  Google Scholar 

  32. Chang Y, Yi M, Wang J, Cao Z, Zhou T, Ge W, Muhammad Z, Zhang Z, Feng Y, Yan Z, Felici M, Shen W, Cao H (2022) Genetic regulation of N6-methyladenosine-RNA in mammalian gametogenesis and embryonic development. Front Cell Dev Biol 10:819044

    PubMed  PubMed Central  Google Scholar 

  33. Zheng B, Zhao D, Zhang P, Shen C, Guo Y, Zhou T, Guo X, Zhou Z, Sha J (2015) Quantitative proteomics reveals the essential roles of stromal interaction molecule 1 (STIM1) in the testicular cord formation in mouse testis. Mol Cell Proteomics 14:2682–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiong Y, Yu C, Zhang Q (2022) Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis. Cells 11(6):1058

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bartles JR, Wierda A, Zheng L (1996) Identification and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations. J Cell Sci 109(Pt 6):1229–1239

    CAS  PubMed  Google Scholar 

  36. Chen H, Jiang Y, Mruk DD, Cheng CY (2021) Spermiation: insights from studies on the adjudin model. Adv Exp Med Biol 1288:241–254

    PubMed  Google Scholar 

  37. Shen C, Xu J, Zhou Q, Lin M, Lv J, Zhang X, Wu Y, Chen X, Yu J, Huang X, Zheng B (2021) E3 ubiquitin ligase ASB17 is required for spermiation in mice. Transl Androl Urol 10:4320–4332

    PubMed  PubMed Central  Google Scholar 

  38. Park IK, Morrison SJ, Clarke MF (2004) Bmi1, stem cells, and senescence regulation. J Clin Invest 113:175–179

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang S, Li D, Li E, Li L, Wang J, Wang C, Lu J, Zhang X (2008) Expression localization of Bmi1 in mice testis. Mol Cell Endocrinol 287:47–56

    CAS  PubMed  Google Scholar 

  40. Sun PH, Ye L, Mason MD, Jiang WG (2012) Protein tyrosine phosphatase micro (PTP micro or PTPRM), a negative regulator of proliferation and invasion of breast cancer cells, is associated with disease prognosis. PLoS ONE 7:e50183

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Barazeghi E, Hellman P, Westin G, Stalberg P (2019) PTPRM, a candidate tumor suppressor gene in small intestinal neuroendocrine tumors. Endocr Connect 8:1126–1135

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 81901532 and 81901533); the Natural Science Foundation of Jiangsu Province (Grant No.: BK20190188); the Gusu Health Talent Program of Suzhou (Grant No.: GSWS2020068); the Suzhou Science and Technology Development Plan (Grant Nos.: SS202060 and SZM2021010); and the Introduce Project of Clinical Medicine Experts of Suzhou Industrial Park (Grant Number: SZYQTD202104).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: BZ, JL; Performed the experiments: JX, YW, CH, CS; Statistical analysis: JX, MS; Wrote the paper: JX, BZ. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bo Zheng or Jinxing Lv.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Wu, T., Huang, C. et al. Identification of proline-rich protein 11 as a major regulator in mouse spermatogonia maintenance via an increase in BMI1 protein stability. Mol Biol Rep 49, 9555–9564 (2022). https://doi.org/10.1007/s11033-022-07846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07846-8

Keywords

Navigation