Skip to main content

Advertisement

Log in

Comparative analysis of complete mitochondrial genomes of three Trichoglossus species (Psittaciformes: Psittacidae)

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The genus Trichoglossus belongs to the family Psittacidae and includes fourteen species distributed worldwide. According to the International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species, most Trichoglossus species have shown a decreasing population trend recently. In particular, Trichoglossus forsteni is listed as “Endangered” in the IUCN Red List of Threatened Species. Moreover, Trichoglossus haematodus and Trichoglossus moluccanus are one of the most traded and illegally traded parrots. However, only a few genetic studies have been conducted regarding the conservation of this genus.

Methods and results

In the present study, complete mitochondrial genomes of three species (T. forsteni, T. haematodus, and T. moluccanus) were sequenced and compared with Trichoglossus rubritorquis, species whose mitochondrial genome is already reported. Results indicate that the complete mitochondrial genomes of the three species were similar in length (17,906 bp for T. haematodus to 17,909 bp for T. forsteni). Furthermore, the organization and order of these three mitochondrial genomes were identical, including thirteen protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes, and two control regions (CRs) categorized into three domains containing nine conserved motifs. In addition, the genus Trichoglossus formed a well-supported monophyletic lineage.

Conclusions

The results of this study may be useful for future genetic studies toward the conservation of the genus Trichoglossus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Blanco G, Hiraldo F, Tella JL (2018) Ecological functions of parrots: an integrative perspective from plant life cycle to ecosystem functioning. Emu-Austral Ornithol 118(1):36–49. https://doi.org/10.1080/01584197.2017.1387031

    Article  Google Scholar 

  2. Olah G, Butchart SH, Symes A, Guzmán IM, Cunningham R, Brightsmith DJ, Heinsohn R (2016) Ecological and socio-economic factors affecting extinction risk in parrots. Biodivers Conserv 25(2):205–223. https://doi.org/10.1007/s10531-015-1036-z

    Article  Google Scholar 

  3. Bush ER, Baker SE, Macdonald DW (2014) Global trade in exotic pets 2006–2012. Conserv Biol 28(3):663–676. https://doi.org/10.1111/cobi.12240

    Article  PubMed  Google Scholar 

  4. Scheffers BR, Oliveira BF, Lamb I, Edwards DP (2019) Global wildlife trade across the tree of life. Science 366(6461):71–76. https://doi.org/10.1126/science.aav5327

    Article  CAS  PubMed  Google Scholar 

  5. del Hoyo J (2020) All the Birds of the World. Lynx Edicions, Barcelona, p 381

    Google Scholar 

  6. BirdLife International (2022) IUCN Red List for birds. http://www.birdlife.org. Assessed 20 March 2022

  7. Setiyani AD, Ahmadi MA (2020) An overview of illegal parrot trade in Maluku and North Maluku Provinces. For Soc 48–60. https://doi.org/10.24259/fs.v4i1.7316

  8. Xu N, Zhang Q, Chen R, Liu H (2019) The complete mitogenome of red-collared lorikeet (Trichoglossus rubritorquis) and its phylogenetic analysis. Mitochondrial DNA B: Resour 4(2):3116–3117. https://doi.org/10.1080/23802359.2019.1667917

    Article  Google Scholar 

  9. Kim J, Karagozlu MZ, An H, Choi T, Yeo Y, Kim C (2021) Development of polymorphic microsatellite markers for the Trichoglossus haematodus and cross-species amplification in Trichoglossus moluccanus. Mol Biol Rep 48(7):5787–5793. https://doi.org/10.1007/s11033-021-06555-y

    Article  CAS  PubMed  Google Scholar 

  10. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27(8):1767–1780. https://doi.org/10.1093/nar/27.8.1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hebert PD, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B: Biol Sci 270(1512):313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  12. Lee JC, Tsai L, Huang M, Jhuang J, Yao C, Chin S, Wang L, Linacre A, Hsieh H (2008) A novel strategy for avian species identification by cytochrome b gene. Electrophoresis 29(11):2413–2418. https://doi.org/10.1002/elps.200700711

    Article  CAS  PubMed  Google Scholar 

  13. Faria PJ, Guedes NM, Yamashita C, Martuscelli P, Miyaki CY (2008) Genetic variation and population structure of the endangered Hyacinth Macaw (Anodorhynchus hyacinthinus): implications for conservation. Biodivers Conserv 17(4):765–779. https://doi.org/10.1007/s10531-007-9312-1

    Article  Google Scholar 

  14. Varela AI, Brokordt K, Ismar-Rebitz SM, Gaskin CP, Carlile N, O’Dwyer T, Adams J, VanderWerf EA, Luna‐Jorquera G(2020) Genetic diversity, population structure, and historical demography of a highly vagile and human‐impacted seabird in the Pacific Ocean: The red‐tailed tropicbird, Phaethon rubricauda. Aquat Conserv: Mar Freshwat Ecosyst 31(2):367 – 337. https://doi.org/10.1002/aqc.3471

  15. Zardoya R, Meyer A (1996) Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol Biol Evol 13(7):933–942. https://doi.org/10.1093/oxfordjournals.molbev.a025661

    Article  CAS  PubMed  Google Scholar 

  16. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41(13):e129. https://doi.org/10.1093/nar/gkt371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319. https://doi.org/10.1016/j.ympev.2012.08.023

    Article  PubMed  Google Scholar 

  18. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358. https://doi.org/10.1007/BF00186547

    Article  CAS  PubMed  Google Scholar 

  21. Eberhard JR, Wright TF, Bermingham E (2001) Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Mol Biol Evol 18(7):1330–1342

    Article  CAS  Google Scholar 

  22. Ruokonen M, Kvist L (2002) Structure and evolution of the avian mitochondrial control region. Mol Phylogenet Evol 23(3):422–432

    Article  CAS  Google Scholar 

  23. Lima NCB, Soares AER, Almeida, Luiz Gonzaga de Paula, Costa IRd, Sato FM, Schneider P, Aleixo A, Schneider MP, Santos FR, Mello CV(2018) Comparative mitogenomic analyses of Amazona parrots and Psittaciformes. Genetics and molecular biology 41(3):593–604. https://doi.org/10.1590/1678-4685-gmb-2017-0023

  24. Kim J, Do TD, Choi Y, Yeo Y, Kim C (2021) Characterization and comparative analysis of complete mitogenomes of three Cacatua Parrots (Psittaciformes: Cacatuidae). Genes 12(2):209. https://doi.org/10.1093/oxfordjournals.molbev.a003917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577. https://doi.org/10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  27. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34(3):772–773. https://doi.org/10.1093/molbev/msw260

    Article  CAS  PubMed  Google Scholar 

  28. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nguyen L, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  30. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5):901–904. https://doi.org/10.1093/sysbio/syy032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Y (2019) The complete mitochondrial genome of yellow-bibbed lory, Lorius chlorocercus (Psittaciformes Psittacidae), with its phylogenetic relationship. Mitochondrial DNA Part B 4(2):3862–3863. https://doi.org/10.1080/23802359.2019.1687037

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guan X, Xu J, Smith EJ (2016) The complete mitochondrial genome sequence of the budgerigar, Melopsittacus undulatus. Mitochondrial DNA Part A 27(1):401–402. https://doi.org/10.3109/19401736.2014.898277

    Article  CAS  Google Scholar 

  33. Eberhard JR, Wright TF (2016) Rearrangement and evolution of mitochondrial genomes in parrots. Mol Phylogenet Evol 94:34–46. https://doi.org/10.1016/j.ympev.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  34. Urantówka AD, Kroczak A, Silva T, Padrón RZ, Gallardo NF, Blanch J, Blanch B, Mackiewicz P (2018) New insight into parrots’ mitogenomes indicates that their ancestor contained a duplicated region. Mol Biol Evol 35(12):2989–3009. https://doi.org/10.1093/molbev/msy189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schweizer M, Wright TF, Peñalba JV, Schirtzinger EE, Joseph L (2015) Molecular phylogenetics suggests a New Guinean origin and frequent episodes of founder-event speciation in the nectarivorous lories and lorikeets (Aves: Psittaciformes). Mol Phylogenet Evol 90:34–48. https://doi.org/10.1016/j.ympev.2015.04.021

    Article  PubMed  Google Scholar 

  36. Braun MP, Reinschmidt M, Datzmann T, Zamora R, Neves L, Arndt T (2017) Influences of oceanic islands & the Pleistocene on the biogeography & evolution of two groups of Australasian parrots (Aves: Psittaciformes: Eclectus roratus, Trichoglossus haematodus complex). Rapid evolution & implications for taxonomy & conservation. Eur J Ecol 3(2):47–66. https://doi.org/10.1515/eje-2017-0014

    Article  Google Scholar 

  37. Schirtzinger EE, Tavares ES, Gonzales LA, Eberhard JR, Miyaki CY, Sanchez JJ, Hernandez A, Müeller H, Graves GR, Fleischer RC (2012) Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Mol Phylogenet Evol 64(2):342–356. https://doi.org/10.1016/j.ympev.2012.04.009

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank Seoul Zoo for helping with the supplement sample. The samples collection was conducted with the assistance of So Young Jung, Jung Yeol An, In Hui Park, Han Sol Kim, Su Yeon Seo, Mihyun Yoo, and Hany Lee.

Funding

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Public Technology Program based on Environmental Policy, funded by Korea Ministry of Environment (MOE) (2018000210004).

Author information

Authors and Affiliations

Authors

Contributions

J.I.K. and C.B.K. conceptualized the study, J.I.K., T.D.D and Y.Y. performed the experiments and analyzed data, J.I.K. and C.B.K. wrote the first draft of manuscript, C.B.K. revised the final draft of manuscript.

Corresponding author

Correspondence to Chang-Bae Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Ethical clearance for the present study was permitted by the Institutional Animal Care and Use Committee (IACUC) of Seoul Zoo (Number: 2019-001). All sampling was according to the standard protocols of this committee.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JI., Do, T.D., Yeo, Y. et al. Comparative analysis of complete mitochondrial genomes of three Trichoglossus species (Psittaciformes: Psittacidae). Mol Biol Rep 49, 9121–9127 (2022). https://doi.org/10.1007/s11033-022-07791-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07791-6

Keywords

Navigation