Skip to main content

Advertisement

Log in

Cholesterol inhibits autophagy in RANKL-induced osteoclast differentiation through activating the PI3K/AKT/mTOR signaling pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

A dysregulated balance between bone formation and bone resorption controlled by osteoblast and osteoclast will lead to osteoporosis. Cholesterol (CHO) is a crucial factor leading to osteoporosis, and autophagy appears to involve it. Therefore, we aimed to study the molecular mechanism of autophagy in CHO-induced osteoclasts differentiation.

Methods

Nuclear factor-κ B ligand as a receptor activator was used to induce osteoclasts differentiation of murine macrophage RAW264.7 treated with CHO, PI3-kinase inhibitor (LY294002), and Rapamycin (RAPA), respectively. Western blot assay was used to detect the expression of TRAP/ACP5 and the proteins involved in autophagy and the PI3K/AKT/mTOR signaling pathway. In addition, TRAP staining, bone resorption assay, and F-actin immunofluorescence were performed to evaluate the ability of osteoclast formation. Transmission electron microscopy and immunofluorescence were also executed to observed the expression of LC3B, and autophagosome.

Results

When RAW264.7 was treated with 20 μg/mL CHO for 5 consecutive days, It exhibited the optimal osteoclast activity. In addition, CHO could inhibit autophagy and activate the PI3K/AKT/mTOR signaling pathway. Moreover, the effects of CHO on osteoclast differentiation and autophagy could partially be reversed by LY294002 and RAPA.

Conclusion

Therefore, our results demonstrated that CHO could inhibit autophagy during osteoclast differentiation by activating the PI3K/AKT/mTOR signaling pathway. These findings provided important theoretical basis for CHO in bone resorption and formation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CHO:

Cholesterol

OPG:

Osteoprotegerin

NFATc1:

Nuclear factor of activated T-cells, c1

CTSK:

Cathepsin K

RANKL:

Receptor activator of nuclear factor kappa-B ligand

Acp5:

Acid phosphatase 5

RAPA:

Rapamycin

PI3K:

Phosphatidylinositol 3-kinase

mTOR:

Mammalian target of rapamycin

BMD:

Bone mineral density

TRAP staining:

Tartrate-resistant acid phosphatase

AKT:

Protein kinase B

References

  1. Kelly JJ, Garapati SS (2019) Combination therapies in the treatment of osteoporosis. Curr Opin Endocrinol Diabetes Obes 26:291–295. https://doi.org/10.1097/MED.0000000000000507

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Curtis EM, Cooper C, Harvey NC (2019) State of the art in osteoporosis risk assessment and treatment. J Endocrinol Invest 42:1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trivedi T, Guise TA (2021) Systemic effects of abnormal bone resorption on muscle, metabolism, and cognition. Bone 154:116245

    Article  PubMed  Google Scholar 

  4. Luegmayr E, Glantschnig H, Wesolowski GA, Gentile MA, Fisher JE, Rodan GA, Reszka AA (2004) Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ 11(Suppl 1):S108

    Article  CAS  PubMed  Google Scholar 

  5. Pelton K, Krieder J, Joiner D, Freeman MR, Goldstein SA, Solomon KR (2012) Hypercholesterolemia promotes an osteoporotic phenotype. Am J Pathol 181:928–936. https://doi.org/10.1016/j.ajpath.2012.05.034

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pang M, Rodríguez-Gonzalez M, Hernandez M, Recinos CC, Seldeen KL, Troen BR (2019) AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors. J Cell Biochem 120:12382

    Article  CAS  PubMed  Google Scholar 

  7. Kim H, Oh B, Park-Min KH (2021) Regulation of osteoclast differentiation and activity by lipid metabolism. Cells 10:89

    Article  CAS  PubMed Central  Google Scholar 

  8. Shuang M, Gu H, Ward A, Yang X, Guo H, He K, Liu Z, Cao W (2012) p38 MAPK promotes cholesterol ester accumulation in macrophages through inhibition of macroautophagy. J Biol Chem 80:1583–1592

    Google Scholar 

  9. Varshney P, Saini N (2018) PI3K/AKT/mTOR activation and autophagy inhibition plays a key role in increased cholesterol during IL-17A mediated inflammatory response in psoriasis. Biochim Biophys Acta 1864:1795–1803

    Article  CAS  Google Scholar 

  10. Huang C, Yu X-H, Zheng X-L, Ou X, Tang C-K (2018) Interferon-stimulated gene 15 promotes cholesterol efflux by activating autophagy via the miR-17–5p/Beclin-1 pathway in THP-1 macrophage-derived foam cells. Eur J Pharmacol 827:13–21

    Article  CAS  PubMed  Google Scholar 

  11. Ma J, Du D, Liu J, Guo L, Li Y, Chen A, Ye T (2019) Hydrogen sulphide promotes osteoclastogenesis by inhibiting autophagy through the PI3K/AKT/mTOR pathway. J Drug Target 28:1–10. https://doi.org/10.1080/1061186X.2019.1624969

    Article  Google Scholar 

  12. Jaber FA, Khan NM, Ansari MY, Al-Adlaan AA, Hussein NJ, Safadi FF (2019) Autophagy plays an essential role in bone homeostasis. J Cell Physiol 234:12105–12115. https://doi.org/10.1002/jcp.27071

    Article  CAS  PubMed  Google Scholar 

  13. Florencio-Silva R, Sasso GR, Simoes MJ, Simoes RS, Baracat MC, Sasso-Cerri E, Cerri PS (2017) Osteoporosis and autophagy: what is the relationship? Rev Assoc Med Bras (1992) 63:173–179. https://doi.org/10.1590/1806-9282.63.02.173

    Article  Google Scholar 

  14. Wan Q, Du Z, Fang Z, Cheng H, Zhou XF (2020) Matrine induces apoptosis and autophagy in human lung adenocarcinoma cells via upregulation of Cavin3 and suppression of PI3K/AKT pathway. J BUON 25:1512

    PubMed  Google Scholar 

  15. Yin X, Zhou C, Li J, Liu R, Shi B, Yuan Q, Zou S (2019) Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res 7:28. https://doi.org/10.1038/s41413-019-0058-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang K, Niu J, Kim H, Kolattukudy PE (2011) Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J Mol Cell Biol 3:360–368. https://doi.org/10.1093/jmcb/mjr021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xue Y, Liang Z, Fu X, Wang T, Xie Q, Ke D (2019) IL-17A modulates osteoclast precursors apoptosis through autophagy-TRAF3 signaling during osteoclastogenesis. Biochem Biophys Res Commun 508:1088

    Article  CAS  PubMed  Google Scholar 

  18. Song L, Tan J, Wang Z, Ding P, Tang Q, Xia M, Wei Y, Chen L (2019) Interleukin17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages. Mol Med Rep 19:4743–4752. https://doi.org/10.3892/mmr.2019.10155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ke D, Ji L, Wang Y, Fu X, Chen J, Wang F, Zhao D, Xue Y, Lan X, Hou J (2019) JNK1 regulates RANKL-induced osteoclastogenesis via activation of a novel Bcl-2-Beclin1-autophagy pathway. FASEB J 33:11082. https://doi.org/10.1096/fj.201802597RR

    Article  CAS  PubMed  Google Scholar 

  20. Xu S, Zhang Y, Liu B, Li K, Huang B, Yan B, Zhang Z, Liang K, Jia C, Lin J (2016) Activation of mTORC1 in B lymphocytes promotes osteoclast formation via regulation of β-catenin and RANKL/OPG. J Bone Miner Res 31:1320–1333

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Wang J, Yang L, Guo R, Huang E, Yang H, Zhang Y, Sun L, Song R, Chen J, Tian Y, Zhao B, Guo Q, Lu H (2019) Swainsonine induces autophagy via PI3K/AKT/mTOR signaling pathway to injure the Renal Tubular Epithelial cells. Biochimie. https://doi.org/10.1016/j.biochi.2019.07.018

    Article  PubMed  PubMed Central  Google Scholar 

  22. Niu Z, Wu Z, Jiang and He, (2014) Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway. Oncol Rep 32:1087–1093

    Article  CAS  PubMed  Google Scholar 

  23. You L, Gu W, Chen L, Pan L, Chen J, Peng Y (2014) MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3k/Akt signaling pathway. Int J Clin Exp Pathol 7:7249–7261

    PubMed  PubMed Central  Google Scholar 

  24. Cheng Y, Huang L, Wang Y, Huo Q, Shao Y, Bao H, Li Z, Liu Y, Li X (2019) Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3E1 cells. Int J Mol Med 44:652–660. https://doi.org/10.3892/ijmm.2019.4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shinohara M, Nakamura M, Masuda H, Hirose J, Kadono Y, Iwasawa M, Nagase Y, Ueki K, Kadowaki T, Sasaki T, Kato S (2012) Class IA phosphatidylinositol 3-kinase regulates osteoclastic bone resorption through protein kinase B-mediated vesicle transport. J Bone Miner Res 27:2464

    Article  CAS  PubMed  Google Scholar 

  26. GyoRi D, Csete D, Benko S, Kulkarni S, Mandl P, Dobó-Nagy C, Vanhaesebroeck B, Stephens L, Hawkins PT, Mócsai A (2014) The phosphoinositide 3-kinase isoform PI3Kβ regulates osteoclast-mediated bone resorption in humans and mice. Arthritis Rheumatol 66:2210–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bu J, Du J, Shi L, Feng W, Wang W, Guo J, Hasegawa T, Liu H, Wang X, Li M (2019) Eldecalcitol effects on osteoblastic differentiation and function in the presence or absence of osteoclastic bone resorption. Exp Ther Med 18:2111–2121. https://doi.org/10.3892/etm.2019.7784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mandal CC (2015) High cholesterol deteriorates bone health: new insights into molecular mechanisms. Front Endocrinol 6:165

    Article  Google Scholar 

  29. Lerner UH, Kindstedt E, Lundberg P (2019) The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol 46:33

    Article  PubMed  Google Scholar 

  30. Chen X, Zhi X, Wang J, Su J (2018) RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. https://doi.org/10.1038/s41413-018-0035-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pennanen P, Kallionp RA, Peltonen S, Nissinen L, Peltonen J (2021) Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player. Mol Biol Rep 48:1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sato TI, Morita I, Murota S (1998) Involvement of cholesterol in osteoclast-like cell formation via cellular fusion. Bone 23:135–140

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y-w, An S-b, Yang T, Xiao Y-j, Wang L, Hu Y-h (2019) Protection effect of curcumin for macrophage-involved polyethylene wear particle-induced inflammatory osteolysis by increasing the cholesterol efflux. Med Sci Monit 25:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng Z-G, Cheng H-M, Zhou Y-P, Zhu S-T, Thu PM, Li H-J, Li P, Xu X (2020) Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ 27:1–18

    Article  Google Scholar 

  35. Tong X, Gu J, Song R, Wang D, Sun Z, Sui C, Zhang C, Liu X, Bian J, Liu Z (2018) Osteoprotegerin inhibit osteoclast differentiation and bone resorption by enhancing autophagy via AMPK/mTOR/p70S6K signaling pathway in vitro. J Cell Biochem. https://doi.org/10.1002/jcb.27468

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maeda K, Kobayashi Y, Koide M, Uehara S, Marumo K (2019) The regulation of bone metabolism and disorders by Wnt signaling. Int J Mol Sci 20:5525

    Article  CAS  PubMed Central  Google Scholar 

  37. Suzuki A, Shim J, Ogata K, Yoshioka H, Iwata J (2019) Cholesterol metabolism plays a crucial role in the regulation of autophagy for cell differentiation of granular convoluted tubules in male mouse submandibular glands. Development 146:dev178335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Texada MJ, Malita A, Rewitz K (2019) Autophagy regulates steroid production by mediating cholesterol trafficking in endocrine cells. Autophagy 15:1478–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Liu N, Gu B, Hu W, Li Y, Guo B, Zhang D (2018) BMAL1 regulates balance of osteogenic–osteoclastic function of bone marrow mesenchymal stem cells in type 2 diabetes mellitus through the NF-κB pathway. Mol Biol Rep 45:1691

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Xu X, Wang HB, Wu D, Li XO, Peng Q, Liu N, Sun WC (2015) 17-Hydroxy-jolkinolide A inhibits osteoclast differentiation through suppressing the activation of NF-κB and MAPKs. Int Immunopharmacol 29:513–520

    Article  CAS  PubMed  Google Scholar 

  41. Goel PN, Egol AJ, Moharrer Y, Brandfield-Harvey B, Ashley JW (2019) Notch signaling inhibition protects against LPS mediated osteolysis. Biochem Biophys Res Commun 515:538–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lou Z, Peng Z, Wang B, Li X, Li X, Zhang X (2019) miR-142–5p promotes the osteoclast differentiation of bone marrow-derived macrophages via PTEN/PI3K/AKT/FoxO1 pathway. J Bone Miner Metab 37:815–824

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Luo R, Yang W, Zhou Z, Li C (2019) miR-363-3p is activated by MYB and regulates osteoporosis pathogenesis via PTEN/PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim 55:376–386

    Article  PubMed  Google Scholar 

  44. Zhao C, Sun W, Zhang P, Ling S, Li Y, Zhao D, Peng J, Wang A, Li Q, Song J, Wang C, Xu X, Xu Z, Zhong G, Han B, Chang YZ, Li Y (2015) miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol 12:343–353. https://doi.org/10.1080/15476286.2015.1017205

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu Z, Lu H, Yao J, Zhang X, Huang Y, Ma S, Zou K, Wei Y, Yang Z, Li J, Zhao J (2019) GABARAP promotes bone marrow mesenchymal stem cells-based the osteoarthritis cartilage regeneration through the inhibition of PI3K/AKT/mTOR signaling pathway. J Cell Physiol 234:21014–21026. https://doi.org/10.1002/jcp.28705

    Article  CAS  PubMed  Google Scholar 

  46. Li H, He C, Wang X, Wang H, Nan G, Fang L (2019) MicroRNA-183 affects the development of gastric cancer by regulating autophagy via MALAT1-miR-183-SIRT1 axis and PI3K/AKT/mTOR signals. Artif Cells Nanomed Biotechnol 47:3163–3171. https://doi.org/10.1080/21691401.2019.1642903

    Article  CAS  PubMed  Google Scholar 

  47. Texada MJ, Malita A, Christensen CF, Dall KB, Faergeman NJ, Nagy S, Halberg KA, Rewitz K (2019) Autophagy-mediated cholesterol trafficking controls steroid production. Dev Cell 48:659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JX conceived and designed the experiments. CJ performed the experiments and YW and MZ analyzed the data. JX and CJ wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin Xu.

Ethics declarations

Conflict of interest

Chunyan Jiang, Yan Wang, Mengqi Zhang, Jin Xu declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Wang, Y., Zhang, M. et al. Cholesterol inhibits autophagy in RANKL-induced osteoclast differentiation through activating the PI3K/AKT/mTOR signaling pathway. Mol Biol Rep 49, 9217–9229 (2022). https://doi.org/10.1007/s11033-022-07747-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07747-w

Keywords