Skip to main content
Log in

Acacetin antagonized lipotoxicity in pancreatic β-cells via ameliorating oxidative stress and endoplasmic reticulum stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose

During the pathogenesis and progression of diabetes, lipotoxicity is a major threat to the function and survival of pancreatic β-cells. To battle against the lipotoxicity induced cellular damages, the present study investigated the beneficial effects of acacetin, a natural antioxidant, on free fatty acid (FFA) stressed RINm5F cells and the potential mechanism involved.

Materials and methods

RINm5F cells with or without 1 h pretreatment of acacetin were treated with 0.35 mM sodium palmitate for 24 h. Cell viability, intracellular reactive oxygen species (ROS) level, antioxidant capacity, cellular apoptosis, and endoplasmic reticulum (ER) stress biomarker expression were investigated.

Results

Our experiments demonstrated that acacetin treatment significantly scavenged the intracellular ROS, upregulated the endogenous antioxidant enzymes, and diminished the sub-G1 DNA fraction in the cells exposed to FFA, suggesting its efficacy against oxidative stress. Meanwhile, acacetin treatment significantly mitigated the overload of intracellular Ca2+ and reduced the pro-apoptotic protein expression in the FFA stimulated cells, and thereby attenuated the ER stress-mediated cell apoptosis. Furthermore, siRNA interference results confirmed that the suppressing of C/EBP-homologous protein (CHOP) was critical to improve FFA-induced reduction in cell viability and ameliorated the ER stress caused by FFA stimulation.

Conclusions

Acacetin may antagonize lipotoxicity in pancreatic cells by attenuating the oxidative stress and ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data used in the study are included in the manuscript.

References

  1. Langlois A, Dumond A, Vion J, Pinget M, Bouzakri K (2022) Crosstalk communications between islets cells and insulin target tissue: the hidden face of iceberg. Front Endocrinol 13:836344. https://doi.org/10.3389/fendo.2022.836344

    Article  Google Scholar 

  2. Huang J, Guo B, Wang G, Zeng L, Hu Y, Wang T, Wang H (2021) DGAT1 inhibitors protect pancreatic β-cells from palmitic acid-induced apoptosis. Acta Pharmacol Sin 42:264–271. https://doi.org/10.1038/s41401-020-0482-7

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Zhao Q, Su S, Dan L, Li X, Wang Y, Lin Y, Tian Z, Sun C, Lu H (2021) Comparative analysis of circRNA expression profile and circRNA-miRNA-mRNA regulatory network between palmitic and stearic acid-induced lipotoxicity to pancreatic β cells. Bioengineered 1:9093–9045. https://doi.org/10.1080/21655979.2021.1992333

    Article  CAS  Google Scholar 

  4. Sramek J, Nemcova-Furstova V, Kovar J (2021) Molecular mechanisms of apoptosis induction and its regulation by fatty acids in pancreatic β-cells. Int J Mol Sci 22:4285. https://doi.org/10.3390/ijms22084285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liou CJ, Wu SJ, Chen LC, Yeh KW, Chen CY, Huang WC (2017) Acacetin from traditionally used Saussurea involucrata Kar. et Kir. suppressed adipogenesis in 3T3-L1 adipocytes and attenuated lipid accumulation in obese mice. Front Pharmacol 8:589. https://doi.org/10.3389/fphar.2017.00589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Escandon-Rivera SM, Mata R, Andrade-Cetto A (2020) Molecules isolated from Mexican hypoglycemic plants: a review. Molecules 25:4145. https://doi.org/10.3390/molecules25184145

    Article  CAS  PubMed Central  Google Scholar 

  7. Song F, Mao Y, Hu Y, Zhao S, Wang R, Wu W, Li G, Wang Y, Li G (2022) Acacetin attenuates diabetes-induced cardiomyopathy by inhibiting oxidative stress and energy metabolism via PPAR-α/AMPK pathway. Eur J Pharmacol 922:174916. https://doi.org/10.1016/j.ejphar.2022.174916

    Article  CAS  PubMed  Google Scholar 

  8. Wu WY, Li YD, Cui YK, Wu C, Hong YX, Li G, Wu Y, Jie LJ, Wang Y, Li GR (2018) The natural flavone acacetin confers cardiomyocyte protection against hypoxia/reoxygenation injury via AMPK-mediated activation of Nrf2 signaling pathway. Front Pharmacol 9:497. https://doi.org/10.3389/fphar.2018.00497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim SM, Park YJ, Shin MS, Kim HR, Kim M, Lee SH, Yun SP, Kwon SH (2017) Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model. Bioorg Med Chem Lett 27:5207–5212. https://doi.org/10.1016/j.bmcl.2017.10.048

    Article  CAS  PubMed  Google Scholar 

  10. Li R, Bu Y, Yang C, Wang J (2021) Effects of lipid deposition on viscoelastic response in human hepatic cell line HepG2. Front Physiol 12:684121. https://doi.org/10.3389/fphys.2021.684121

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tu DZ, Gao Y, Yang R, Guan T, Hong JS, Gao HM (2019) The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J Neuroinflamm 16:255. https://doi.org/10.1186/s12974-019-1659-1

    Article  CAS  Google Scholar 

  12. Sun Y, Yang J, Liu W, Yao G, Xu F, Hayashi T, Onodera S, Ikejima T (2019) Attenuating effect of silibinin on palmitic acid-induced apoptosis and mitochondrial dysfunction in pancreatic β-cell is mediated by estrogen receptor alpha. Mol Cell Biochem 460:81–92. https://doi.org/10.1007/s11010-019-03572-1

    Article  CAS  PubMed  Google Scholar 

  13. Cao J, Dai D, Yao L, Yu H, Ning B, Zhang Q, Chen J, Cheng W, Shen W, Yang Z (2012) Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem 364:115–129. https://doi.org/10.1007/s11010-011-1211-9

    Article  CAS  PubMed  Google Scholar 

  14. Biden TJ, Boslem E, Chu KY, Sue N (2014) Lipotoxic endoplasmic reticulum stress, cell failure, and type 2 diabetes mellitus. Trends Endocrinol Metab 25:389–398. https://doi.org/10.1016/j.tem.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  15. Xu S, Nam SM, Kim JH, Das R, Choi SK, Nguyen TT, Quan X, Choi SJ, Chung CH, Lee EY, Lee IK, Wiederkehr A, Wollheim CB, Cha SK, Park KS (2015) Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis 6:e1976–e1976. https://doi.org/10.1038/cddis.2015.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Egnatchik RA, Leamy AK, Noguchi Y, Shiota M, Young JD (2014) Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes. Metabolism 63:283–295. https://doi.org/10.1016/j.metabol.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  17. Wang N, Yi WJ, Tan L, Zhang JH, Xu J, Chen Y, Qin M, Yu S, Guan J, Zhang R (2017) Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense. In Vitro Cell Dev Biol Anim 53:554–563. https://doi.org/10.1007/s11626-017-0135-4

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Xie F, Qin D, Zong C, Han F, Pu Z, Liu D, Li X, Zhang Y, Liu Y, Wang X (2018) The orphan nuclear receptor NR4A1 attenuates oxidative stress-induced β cells apoptosis via up-regulation of glutathione peroxidase 1. Life Sci 203:225–232. https://doi.org/10.1016/j.lfs.2018.04.027

    Article  CAS  PubMed  Google Scholar 

  19. Benakova S, Holendova B, Plecita-Hlavata L (2021) Redox homeostasis in pancreatic β-cells: from development to failure. Antioxidants (Basel) 10:526. https://doi.org/10.3390/antiox10040526

    Article  CAS  Google Scholar 

  20. Zhang R, Chae S, Lee JH, Hyun JW (2012) The cytoprotective effect of butin against oxidative stress is mediated by the up-regulation of manganese superoxide dismutase expression through a PI3K/Akt/Nrf2-dependent pathway. J Cell Biochem 113:1987–1997. https://doi.org/10.1002/jcb.24068

    Article  CAS  PubMed  Google Scholar 

  21. Wang N, Zhang J, Qin M, Yi W, Yu S, Chen Y, Guan J, Zhang R (2018) Amelioration of streptozotocin-induced pancreatic β cell damage by morin: involvement of the AMPK-FOXO3-catalase signaling pathway. Int J Mol Med 41:1409–1418. https://doi.org/10.3892/ijmm.2017.3357

    Article  CAS  PubMed  Google Scholar 

  22. Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, Wiederkehr A, Wollheim CB, Lee IK, Park KS (2017) Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 49:e291–e291. https://doi.org/10.1038/emm.2016.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mustapha S, Mohammed M, Azemi AK, Jatau AI, Shehu A, Mustapha L, Aliyu IM, Danraka RN, Amin A, Bala AA, Ahmad WANW, Rasool AHG, Mustafa MR, Mokhtar SS (2021) Current status of endoplasmic reticulum stress in type II diabetes. Molecules 26:4362. https://doi.org/10.3390/molecules26144362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thivolet C, Vial G, Cassel R, Rieusset J, Madec AM (2017) Reduction of endoplasmic reticulum- mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS ONE 12:e0182027. https://doi.org/10.1371/journal.pone.0182027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Egnatchik RA, Leamy AK, Jacobson DA, Shiota M, Young JD (2014) ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol Metab 3:544–553. https://doi.org/10.1016/j.molmet.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan Z, Cao A, Liu H, Guo H, Zang Y, Wang Y, Wang Y, Wang H, Yin P, Peng W (2017) Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J Cell Biochem 118:2809–2818. https://doi.org/10.1002/jcb.25930

    Article  CAS  PubMed  Google Scholar 

  27. Ha Y, Liu W, Liu H, Zhu S, Xia F, Gerson JE, Azhar NA, Tilton RG, Motamedi M, Kayed R, Zhang W (2018) AAV2-mediated GRP78 transfer alleviates retinal neuronal injury by downregulating ER stress and Tau oligomer formation. Invest Ophthalmol Vis Sci 59:4670–4682. https://doi.org/10.1167/iovs.18-24427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kopp MC, Larburu N, Durairaj V, Adams CJ, Ali MMU (2019) UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol 26:1053–1062. https://doi.org/10.1038/s41594-019-0324-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tam AB, Roberts LS, Chandra V, Rivera IG, Nomura DK, Forbes DJ, Niwa M (2018) The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev Cell 46:327–343. https://doi.org/10.1016/j.devcel.2018.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Badiola N, Penas C, Miñano-Molina A, Barneda-Zahonero B, Fadó R, Sánchez-Opazo G, Comella JX, Sabriá J, Zhu C, Blomgren K, Casas C, Rodríguez-Alvarez J (2011) Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2:e149. https://doi.org/10.1038/cddis.2011.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao W, Xu B, Zhang Y, Liu S, Duan Z, Chen Y, Zhang X (2022) Baicalin attenuates oxidative stress in a tissue-engineered liver model of NAFLD by scavenging reactive oxygen species. Nutrients 14:541. https://doi.org/10.3390/nu14030541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yong J, Parekh VS, Reilly SM, Nayak J, Chen Z, Lebeaupin C, Jang I, Zhang J, Prakash TP, Sun H, Murray S, Guo S, Ayala JE, Satin LS, Saltiel AR, Kaufman RJ (2021) Chop/Ddit3 depletion in β cells alleviates ER stress and corrects hepatic steatosis in mice. Sci Transl Med 13(604):eaba9796. https://doi.org/10.1126/scitranslmed.aba9796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Guo Y, Tang J, Jiang J, Chen Z (2014) New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin 46:629–640. https://doi.org/10.1093/abbs/gmu048

    Article  CAS  PubMed  Google Scholar 

  34. Nam DH, Han JH, Lim JH, Park KM, Woo CH (2017) CHOP deficiency ameliorates ERK5 inhibition-mediated exacerbation of streptozotocin-induced hyperglycemia and pancreatic β-cell apoptosis. Mol Cells 40:457–465. https://doi.org/10.14348/molcells.2017.2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Kuramitsu Y, Baron B, Kitagawa T, Akada J, Tokuda K, Cui D, Nakamura K (2015) PERK/CHOP contributes to the CGK733-induced vesicular calcium sequestration which is accompanied by non-apoptotic cell death. Oncotarget 6:25252–25265. https://doi.org/10.18632/oncotarget.4487

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was approved by the National Natural Science Foundation of China (grant number 81300673), Natural Science Foundation of Jiangsu Province (grant number BK20130496), and Startup Foundation for Advanced Talents of Jiangsu University (grant number 13JDG004 & 13JDG006), Natural Science Foundation of Jiangsu Province (No. BK20191429), and Cultivation Project for Young Core Teacher of Jiangsu University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Specifically, material preparation, and data collection were performed by Gao Q, Shi J, Chen YL. Data analysis was conducted by Ji W and Sheng X. Wang N and Zhang R co-supervised the work. Wang N wrote the first draft of manuscript. Zhang R conceived the original experiment design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ning Wang or Rui Zhang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This study complies with all Ethical Standards. The current study does not include any human participants or animals so informed consents are not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Gao, Q., Shi, J. et al. Acacetin antagonized lipotoxicity in pancreatic β-cells via ameliorating oxidative stress and endoplasmic reticulum stress. Mol Biol Rep 49, 8727–8740 (2022). https://doi.org/10.1007/s11033-022-07717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07717-2

Keywords

Navigation