Skip to main content

Advertisement

Log in

Trehalose: a promising osmo-protectant against salinity stress—physiological and molecular mechanisms and future prospective

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salt stress is one of the leading threats to crop growth and productivity across the globe. Salt stress induces serious alterations in plant physiological, metabolic, biochemical functioning and it also disturbs antioxidant activities, cellular membranes, photosynthetic performance, nutrient uptake and plant water uptake and resulting in a significant reduction in growth and production. The application of osmoprotectants is considered as an important strategy to induce salt tolerance in plants. Trehalose (Tre) has emerged an excellent osmolyte to induce salinity tolerance and it got considerable attention in recent times. Under salinity stress, Tre helps to maintain the membrane integrity, and improves plant water relations, nutrient uptake and reduces the electrolyte leakage and lipid per-oxidation. Tre also improves gas exchange characteristics, protects the photosynthetic apparatus from salinity induced oxidative damages and brings ultra-structure changes in the plant body to induce salinity tolerance. Moreover, Tre also improves antioxidant activities and expression of stress responsive proteins and genes and confers salt tolerance in plants. Additionally, Tre is also involved in signaling association with signaling molecules and phytohormones and resultantly improved the plant performance under salt stress. Thus, it is interesting to understand the role of Tre in mediating the salinity tolerance in plants. Therefore, in this review we have summarized the different physiological and molecular roles of Tre to induce salt tolerance in plants. Moreover, we have also provided the information on Tre cross-talk with various osmolytes and hormones, and its role in stress responsive genes and antioxidant activities. Lastly, we also shed light on research gaps that need to be addressed in future studies. Therefore, this review will help the scientists to learn more about the Tre in changing climate conditions and it will also provide new insights to insights that could be used to develop salinity tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SS:

Salinity stress

ROS:

Reactive oxygen species

Na+ :

Sodium

K+ :

Potassium

MDA:

Malondialdehyde

H2O2 :

Hydrogen peroxide

Tre:

Trehalose

Cl-:

Chloride

CO2 :

Carbon dioxide

RWC:

Relative water contents

PS-II:

Photo system-II

APX:

Ascorbate peroxidase

GXP:

Glutathione peroxidase

GR:

Glutathione reductase

SOD:

Superoxide dismutase

POD:

Peroxides

CAT:

Catalase

ABA:

Abscisic acid

GA:

Gibberellic acid

JA:

Jasmonic acid

SA:

Salicylic acid

EL:

Electrolyte leakage

LOX:

Lipoxygenases

MG:

Methylglyoxal

References

  1. Talaat NB, Shawky BT (2022) Synergistic effects of salicylic acid and melatonin on modulating ion homeostasis in salt-stressed wheat (Triticum aestivum L.) plants by enhancing root h+-pump activity. Plants 11(3):416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ismail LM, Soliman MI, Abd El-Aziz MH, Abdel-Aziz HM (2022) Impact of silica ions and nano silica on growth and productivity of pea plants under salinity stress. Plants 11(4):494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Talaat NB (2019) Role of reactive oxygen species signaling in plant growth and development. Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, Hoboken, pp 225–266

    Book  Google Scholar 

  4. Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lyu JI, Min SR, Lee JH, Lim YH, Kim J-K, Bae C-H et al (2013) Overexpression of a trehalose-6-phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato. Plant Cell Tissue Organ Culture 112(2):257–262

    Article  CAS  Google Scholar 

  7. Batool M, El-Badri AM, Hassan MU, Haiyun Y, Chunyun W, Zhenkun Y et al (2022) Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10542-9

    Article  Google Scholar 

  8. Dustgeer Z, Seleiman MF, Imran K, Chattha MU, Alhammad BA, Jalal RS et al (2021) Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(1):12248

    Article  CAS  Google Scholar 

  9. Imran K, Zafar H, Chattha MU, Mahmood A, Maqbool R, Athar F et al (2022) Seed priming with different agents mitigate alkalinity induced oxidative damage and improves maize growth. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50(1):12615

    Article  Google Scholar 

  10. Sultan I, Khan I, Chattha MU, Hassan MU, Barbanti L, Calone R et al (2021) Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Ital J Agron. https://doi.org/10.4081/ija.2021.1810

    Article  Google Scholar 

  11. Umair Hassan M, Aamer M, Umer Chattha M, Haiying T, Shahzad B, Barbanti L et al (2020) The critical role of zinc in plants facing the drought stress. Agriculture 10(9):396

    Article  Google Scholar 

  12. Batool M, El-Badri AM, Wang Z, Mohamed IA, Yang H, Ai X et al (2022) Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy 12(3):579

    Article  CAS  Google Scholar 

  13. Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M et al (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut Res 26(13):12673–12688

    Article  CAS  Google Scholar 

  14. Hassan MU, Chattha MU, Khan I, Chattha MB, Barbanti L, Aamer M et al (2021) Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosyst 155(2):211–234

    Article  Google Scholar 

  15. Imran K, Seleiman MF, Chattha MU, Jalal RS, Mahmood F, Hassan FA et al (2021) Enhancing antioxidant defense system of mung bean with a salicylic acid exogenous application to mitigate cadmium toxicity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(2):12303

    Article  Google Scholar 

  16. Umer Chattha M, Arif W, Khan I, Soufan W, Bilal Chattha M, Hassan MU et al (2021) Mitigation of cadmium induced oxidative stress by using organic amendments to improve the growth and yield of mash beans [Vigna mungo (L.)]. Agronomy 11(11):2152

    Article  CAS  Google Scholar 

  17. Nafees M, Fahad S, Shah AN, Bukhari MA, Ahmed I, Ahmad S, Hussain S (2019) Reactive oxygen species signaling in plants. In Plant abiotic stress tolerance. Springer, Cham, pp. 259–272

  18. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  19. Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Article  CAS  PubMed  Google Scholar 

  20. Ashraf MA, Asma HF, Iqbal M (2019) Exogenous menadione sodium bisulfite mitigates specific ion toxicity and oxidative damage in salinity-stressed okra (Abelmoschus esculentus Moench). Acta Physiol Plant 41(12):1–12

    Article  CAS  Google Scholar 

  21. Seleiman MF, Aslam MT, Alhammad BA, Hassan MU, Maqbool R, Chattha MU et al (2022) Salinity stress in wheat: effects, mechanisms and management strategies. Phyton 91(4):667

    Google Scholar 

  22. Talaat NB (2015) Effective microorganisms improve growth performance and modulate the ROS-scavenging system in common bean (Phaseolus vulgaris L.) plants exposed to salinity stress. J Plant Growth Regul 34(1):35–46

    Article  CAS  Google Scholar 

  23. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  24. Abbasi H, Jamil M, Haq A, Ali S, Ahmad R, Malik Z et al (2016) Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculture 103(2):229–238

    Article  Google Scholar 

  25. Rasheed A, Fahad S, Aamer M, Hassan M, Tahir M, Wu Z (2020) Role of genetic factors in regulating cadmium uptake, transport and accumulation mechanisms and quantitative trait loci mapping in rice. A review. Appl Ecol Environ Res 18(3):4005–4023

    Article  Google Scholar 

  26. Rasheed A, Gill RA, Hassan MU, Mahmood A, Qari S, Zaman QU et al (2021) A critical review: recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Curr Issues Mol Biol 43(3):1950–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rasheed A, Hassan MU, Aamer M, Batool M, Sheng F, Ziming W et al (2020) A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(4):1756–1788

    Article  CAS  Google Scholar 

  28. Rasheed A, Ilyas M, Khan T, Nawab NN, Ahmed I, Mazhar M et al (2017) Genetic association and path coefficient analysis among yield and yield related traits in tomato (Solanum lycopersicon MILL.). Int J Biosci 11(5):21–26

    Article  Google Scholar 

  29. Nedjimi B (2014) Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochem Syst Ecol 52:4–13

    Article  CAS  Google Scholar 

  30. Rady MM, Talaat NB, Abdelhamid MT, Shawky BT, Desoky E-SM (2019) Maize (Zea mays L.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris L.) growth and physiology. J Hortic Sci Biotechnol 94(6):777–789

    Article  CAS  Google Scholar 

  31. Rehman AU, Bashir F, Ayaydin F, Kóta Z, Páli T, Vass I (2021) Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiol Plant 172(1):7–18

    Article  CAS  PubMed  Google Scholar 

  32. Shen W, Liu D, Zhang H, Zhu W, He H, Li G et al (2021) Overexpression of β-cyanoalanine synthase of Prunus persica increases salt tolerance by modulating ROS metabolism and ion homeostasis. Environ Exp Bot 186:104431

    Article  CAS  Google Scholar 

  33. Berwal MK, Kumar R, Prakash K, Rai GK, Hebbar K (2021) Antioxidant defense system in plants against abiotic stress. Abiotic stress tolerance mechanisms in plants. CRC Press, Boca Raton, pp 175–202

    Book  Google Scholar 

  34. Azad N, Rezayian M, Hassanpour H, Niknam V, Ebrahimzadeh H (2021) Physiological mechanism of salicylic acid in Mentha pulegium L. under salinity and drought stress. Braz J Bot 44(2):359–369

    Article  Google Scholar 

  35. Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio/Technol 14(3):407–426

    Article  CAS  Google Scholar 

  36. Dey S, Biswas A, Huang S, Li D, Liu L, Deng Y et al (2021) Low temperature effect on different varieties of Corchorus capsularis and Corchorus olitorius at seedling stage. Agronomy 11(12):2547

    Article  CAS  Google Scholar 

  37. Khan MT, Ahmed S, Shah AA, Noor Shah A, Tanveer M, El-Sheikh MA et al (2021) Influence of zinc oxide nanoparticles to regulate the antioxidants enzymes, some osmolytes and agronomic attributes in Coriandrum sativum L. Grown Under Water Stress Agron 11(10):2004

    CAS  Google Scholar 

  38. Almeida AM, Silva AB, Araujo SS, Cardoso LA, Santos DM, Torné JM et al (2007) Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene: a special reference to photosynthetic parameters. Euphytica 154(1):113–126

    Article  CAS  Google Scholar 

  39. Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18(1):24–36

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo Y, Xie Y, Li W, Wei M, Dai T, Li Z et al (2021) Physiological and transcriptomic analyses reveal exogenous trehalose is involved in the responses of wheat roots to high temperature stress. Plants 10(12):2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38(2):606–618

    Article  CAS  Google Scholar 

  42. Jinhua S, Weixiong W, Rasul F, Munir H, Huang K, Albishi TS et al (2022) Trehalose induced drought tolerance in plants: physiological and molecular responses. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50(1):12584

    Article  Google Scholar 

  43. Rehman S, Chattha MU, Khan I, Mahmood A, Hassan MU, Al-Huqail AA et al (2022) Exogenously applied trehalose augments cadmium stress tolerance and yield of mung bean (Vigna radiata L.) grown in soil and hydroponic systems through reducing Cd uptake and enhancing photosynthetic efficiency and antioxidant defense systems. Plants 11(6):822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sadak MS (2019) Physiological role of trehalose on enhancing salinity tolerance of wheat plant. Bull Natl Res Cent 43(1):1–10

    Article  Google Scholar 

  45. Abdallah M-S, Abdelgawad Z, El-Bassiouny H (2016) Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. S Afr J Bot 103:275–282

    Article  CAS  Google Scholar 

  46. Zulfiqar F, Chen J, Finnegan PM, Younis A, Nafees M, Zorrig W et al (2021) Application of trehalose and salicylic acid mitigates drought stress in sweet basil and improves plant growth. Plants 10(6):1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Debez A, Ben Slimen ID, Bousselmi S, Atia A, Farhat N, El Kahoui S et al (2020) Comparative analysis of salt impact on sea barley from semi-arid habitats in Tunisia and cultivated barley with special emphasis on reserve mobilization and stress recovery aptitude. Plant Biosyst 154(4):544–552

    Article  Google Scholar 

  48. Lokupitiya E, Agrawal M, Ahamed T, Mustafa N, Ahmed B, Vathani A et al (2020) Evaluation of best management practices with greenhouse gas benefits for salt-affected paddy soils in South Asia. APN Sci Bull. https://doi.org/10.30852/sb.2020.1042

    Article  Google Scholar 

  49. Mwando E, Han Y, Angessa TT, Zhou G, Hill CB, Zhang X-Q et al (2020) Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Front Plant Sci 11:118

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bilkis A, Islam M, Hafiz M, Hasan M (2016) Effect of NaCl induced salinity on some physiological and agronomic traits of wheat. Pak J Bot 48(2):455–460

    CAS  Google Scholar 

  51. El-Hendawy S, Elshafei A, Al-Suhaibani N, Alotabi M, Hassan W, Dewir YH et al (2019) Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. J Plant Interact 14(1):151–163

    Article  CAS  Google Scholar 

  52. Bagwasi G, Agenbag GA, Swanepoel PA (2020) Effect of salinity on the germination of wheat and barley in South Africa. Crop Forage Turfgrass Manag 6(1):e20069

    Article  CAS  Google Scholar 

  53. Al-shareef NO, Tester M (2019) Plant salinity tolerance. eLS. Wiley, Hoboken, pp 1–6

    Google Scholar 

  54. Alkharabsheh HM, Seleiman MF, Hewedy OA, Battaglia ML, Jalal RS, Alhammad BA et al (2021) Field crop responses and management strategies to mitigate soil salinity in modern agriculture: a review. Agronomy 11(11):2299

    Article  CAS  Google Scholar 

  55. Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55(399):1115–1123

    Article  CAS  PubMed  Google Scholar 

  56. Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S (2011) Sequential depolarization of root cortical and stelar cells induced by an acute salt shock–implications for Na+ and K+ transport into xylem vessels. Plant Cell Environ 34(5):859–869

    Article  CAS  PubMed  Google Scholar 

  57. Shabala L, Zhang J, Pottosin I, Bose J, Zhu M, Fuglsang AT et al (2016) Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiol 172(4):2445–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parkash V, Singh S (2020) Potential of biochar application to mitigate salinity stress in eggplant. HortScience 55(12):1946–1955

    Article  CAS  Google Scholar 

  59. Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171(9):723–731

    Article  CAS  PubMed  Google Scholar 

  60. Wu H, Zhang X, Giraldo JP, Shabala S (2018) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil 431(1):1–17

    Article  CAS  Google Scholar 

  61. Saeed Z, Naveed M, Imran M, Bashir MA, Sattar A, Mustafa A et al (2019) Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS ONE 14(3):e0213016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nassar R, Kamel HA, Ghoniem AE, Alarcón JJ, Sekara A, Ulrichs C et al (2020) Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants 9(2):237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Senadheera P, Tirimanne S, Maathuis FJ (2012) Long term salinity stress reveals variety specific differences in root oxidative stress response. Rice Sci 19(1):36–43

    Article  Google Scholar 

  64. Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AM, Raza A, Fatima EM et al (2021) Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11(6):1193

    Article  CAS  Google Scholar 

  65. Zahra N, Raza ZA, Mahmood S (2020) Effect of salinity stress on various growth and physiological attributes of two contrasting maize genotypes. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2020200072

    Article  Google Scholar 

  66. Yan Q, Zhang J, Li X, Wang Y (2019) Effects of salinity stress on seed germination and root growth of seedlings in island cotton. Acta Agron Sin 45(1):100–110

    Article  Google Scholar 

  67. Sheteiwy MS, Shao H, Qi W, Daly P, Sharma A, Shaghaleh H et al (2021) Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J Sci Food Agric 101(5):2027–2041

    Article  CAS  PubMed  Google Scholar 

  68. Alzahrani SM, Alaraidh IA, Migdadi H, Alghamdi S, Khan MA, Ahmad P (2019) Physiological, biochemical, and antioxidant properties of two genotypes of Vicia faba grown under salinity stress. Pak J Bot 51(3):786–798

    Article  Google Scholar 

  69. Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1):73–82

    Article  CAS  Google Scholar 

  70. Ahanger MA, Agarwal R (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  71. Hassan A, Amjad SF, Saleem MH, Yasmin H, Imran M, Riaz M et al (2021) Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J Biol Sci 28(8):4276–4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kamran M, Malik Z, Parveen A, Huang L, Riaz M, Bashir S et al (2020) Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J Plant Growth Regul 39(1):266–281

    Article  CAS  Google Scholar 

  73. Singh SK, Hoyos-Villegas V, Ray JD, Smith JR, Fritschi FB (2013) Quantification of leaf pigments in soybean (Glycine max (L.) Merr.) based on wavelet decomposition of hyperspectral features. Field Crop Res 149:20–32

    Article  Google Scholar 

  74. Rangani J, Parida AK, Panda A, Kumari A (2016) Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confer salt tolerance in an extreme halophyte Salvadora persica L. Front Plant Sci 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang C, Wang P, Li C, Shi D, Wang D (2008) Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46(1):107–114

    Article  CAS  Google Scholar 

  76. Abrar MM, Saqib M, Abbas G, Atiq-ur-Rahman M, Mustafa A, Shah SAA et al (2020) Evaluating the contribution of growth, physiological, and ionic components towards salinity and drought stress tolerance in Jatropha curcas. Plants 9(11):1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang Z, Li J-L, Liu L-N, Xie Q, Sui N (2020) Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01722

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wahid I, Kumari S, Ahmad R, Hussain SJ, Alamri S, Siddiqui MH et al (2020) Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules 10(11):1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Al-Ashkar I, Alderfasi A, El-Hendawy S, Al-Suhaibani N, El-Kafafi S, Seleiman MF (2019) Detecting salt tolerance in doubled haploid wheat lines. Agronomy 9(4):211

    Article  CAS  Google Scholar 

  80. Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539

    Article  CAS  PubMed  Google Scholar 

  81. Bhatt T, Sharma A, Puri S, Minhas AP (2020) Salt tolerance mechanisms and approaches: future scope of halotolerant genes and rice landraces. Rice Sci 27(5):368–383

    Article  Google Scholar 

  82. Ding Y, Liu N, Virlouvet L, Riethoven J-J, Fromm M, Avramova Z (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13(1):1–11

    Article  CAS  Google Scholar 

  83. Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thitisaksakul M, Tananuwong K, Shoemaker CF, Chun A, Tanadul O-U-M, Labavitch JM et al (2015) Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality. J Agric Food Chem 63(8):2296–2304

    Article  CAS  PubMed  Google Scholar 

  85. Li J, Chen J, Jin J, Wang S, Du B (2019) Effects of irrigation water salinity on maize (Zea may L.) emergence, growth, yield, quality, and soil salt. Water 11(10):2095

    Article  CAS  Google Scholar 

  86. Raza MM, Ullah S, Tariq A, Abbas T, Yousaf MM, Altay V et al (2019) Alleviation of salinity stress in maize using silicon nutrition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(4):1340–1347

    Article  CAS  Google Scholar 

  87. Kongpun A, Jaisiri P, Rerkasem B (2020) Impact of soil salinity on grain yield and aromatic compound in Thai Hom Mali rice cv. Khao Dawk Mali 105. Agric Nat Res 54(1):74–78

    Google Scholar 

  88. Jamshidi A, Javanmard H (2018) Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng J 9(4):2093–2099

    Article  Google Scholar 

  89. Abbas G, Saqib M, Rafique Q, Rahman A, Akhtar J, Haq M et al (2013) Effect of salinity on grain yield and grain quality of wheat (Triticum aestivum L.). Pak J Bot 50:185–189

    Google Scholar 

  90. Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci 2:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blazquez MA, Santos E, Cl F, Martínez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J 13(5):685–689

    Article  CAS  PubMed  Google Scholar 

  92. Zentella R, Mascorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C et al (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol 119(4):1473–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vogel G, Aeschbacher RA, Müller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J 13(5):673–683

    Article  CAS  PubMed  Google Scholar 

  94. Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V et al (2014) Natural products from resurrection plants: potential for medical applications. Biotechnol Adv 32(6):1091–1101

    Article  CAS  PubMed  Google Scholar 

  95. Schwarz S, Van Dijck P (2017) Trehalose metabolism: a sweet spot for Burkholderia pseudomallei virulence. Virulence 8(1):5–7

    Article  PubMed  Google Scholar 

  96. Delorge I, Janiak M, Carpentier S, Van Dijck P (2014) Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front Plant Sci 5:147

    Article  PubMed  PubMed Central  Google Scholar 

  97. Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, De Graff P, Poels J et al (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113(1):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50(10):1223–1229

    Article  CAS  PubMed  Google Scholar 

  99. Li H-W, Zang B-S, Deng X-W, Wang X-P (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234(5):1007–1018

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283(14):9269–9275

    Article  CAS  PubMed  Google Scholar 

  101. Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136(4):4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhuang Y, Ren G, Yue G, Li Z, Qu X, Hou G et al (2007) Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Rep 26(12):2137–2147

    Article  CAS  PubMed  Google Scholar 

  103. López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134(4):575–582

    Article  PubMed  Google Scholar 

  104. Bae H, Herman E, Sicher R (2005) Exogenous trehalose promotes non-structural carbohydrate accumulation and induces chemical detoxification and stress response proteins in Arabidopsis thaliana grown in liquid culture. Plant Sci 168(5):1293–1301

    Article  CAS  Google Scholar 

  105. Teramoto N, Sachinvala ND, Shibata M (2008) Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13(8):1773–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Paul S, Paul S (2014) Trehalose induced modifications in the solvation pattern of N-methylacetamide. J Phys Chem B 118(4):1052–1063

    Article  CAS  PubMed  Google Scholar 

  107. López-Gómez M, Lluch C (2012) Trehalose and abiotic stress tolerance. Abiotic stress responses in plants. Springer, Cham, pp 253–265

    Book  Google Scholar 

  108. Crowe JH (2007) Trehalose as a “chemical chaperone”. Molecular aspects of the stress response: chaperones, membranes and networks. Springer, New York, pp 143–158

    Book  Google Scholar 

  109. Cesaro A, De Giacomo O, Sussich F (2008) Water interplay in trehalose polymorphism. Food Chem 106(4):1318–1328

    Article  CAS  Google Scholar 

  110. Einfalt T, Planinšek O, Hrovat K (2013) Methods of amorphization and investigation of the amorphous state. Acta Pharm 63(3):305–334

    Article  CAS  Google Scholar 

  111. Rohman M, Islam M, Monsur MB, Amiruzzaman M, Fujita M, Hasanuzzaman M (2019) Trehalose protects maize plants from salt stress and phosphorus deficiency. Plants 8(12):568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut Res 24(19):16531–16535

  113. Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6849–6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Trehalose-induced drought stress tolerance: a comparative study among different Brassica species. Plant Omics 7(4):271–283

    Google Scholar 

  115. Nounjan N, Theerakulpisut P (2012) Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ 58(7):309–315

    Article  CAS  Google Scholar 

  116. Mn ALLA, Badran E, Mohammed F (2019) Exogenous trehalose alleviates the adverse effects of salinity stress in wheat. Turk J Bot 43(1):48–57

    Article  Google Scholar 

  117. Mostofa MG, Hossain MA, Fujita M (2015) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma 252(2):461–475

    Article  CAS  PubMed  Google Scholar 

  118. Theerakulpisut P, Phongngarm S (2013) Alleviation of adverse effects of salt stress on rice seedlings by exogenous trehalose. Asian J Crop Sci 5(4):405

    Article  Google Scholar 

  119. Zeid I (2009) Trehalose as osmoprotectant for maize under salinity-induced stress. Res J Agric Biol Sci 5(5):613–622

    CAS  Google Scholar 

  120. Shah AN, Wu Y, Iqbal J, Tanveer M, Bashir S, Rahman SU, Hafeez A, Ali S, Ma X, Alotaibi SS, El-Shehawi A (2021a) Nitrogen and plant density effects on growth, yield performance of two different cotton cultivars from different origin. J King Saud Univ-Sci 33(6):101512

  121. Shah AN, Wu Y, Tanveer M, Hafeez A, Tung SA, Ali S, Khalofah A, Alsubeie MS, Al-Qthanin RN, Yang G (2021b) Interactive effect of nitrogen fertilizer and plant density on photosynthetic and agronomical traits of cotton at different growth stages. Saudi J Biol Sci 28(6):3578–3584

  122. Eisa G, Ibrahim SA (2016) Mitigation the harmful effects of diluted sea water salinity on physiological and anatomical traits by foliar spray with trehalose and sodium nitroprusside of cowpea plants. Middle East J Gric 5(4):672–686

    Google Scholar 

  123. Shahbaz M, Abid A, Masood A, Waraich EA (2017) Foliar-applied trehalose modulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (Oryza sativa L.) under saline stress. J Plant Nutr 40(4):584–599

    Article  CAS  Google Scholar 

  124. Chang B, Yang L, Cong W, Zu Y, Tang Z (2014) The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 77:140–148

    Article  CAS  PubMed  Google Scholar 

  125. Yang L, Zhao X, Zhu H, Paul M, Zu Y, Tang Z (2014) Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front Plant Sci 5:570

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ali Q, Ashraf M (2011) Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. J Agron Crop Sci 197(4):258–271

    Article  CAS  Google Scholar 

  127. Shahzad AN, Qureshi MK, Ullah S, Latif M, Ahmad S, Bukhari SAH (2020) Exogenous trehalose improves cotton growth by modulating antioxidant defense under salinity-induced osmotic stress. Pak J Agric Res 33(2):270–279

    Google Scholar 

  128. Shah AN, Yang G, Tanveer M, Iqbal J (2017) Leaf gas exchange, source–sink relationship, and growth response of cotton to the interactive effects of nitrogen rate and planting density. Acta Physiologiae Plantarum 39(5):1–10

  129. Abdelgawad Z, Hathout T, El-Khallal S, Said E, Al-Mokadem A (2014) Accumulation of trehalose mediates salt adaptation in rice seedlings. Am Eurasian J Agric Environ Sci 14(12):1450–1463

    Google Scholar 

  130. Mohamed HI, Akladious SA, El-Beltagi HS (2018) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresenius Environ Bull 27(10):7054–7065

    CAS  Google Scholar 

  131. Samadi S, Habibi G, Vaziri A (2019) Exogenous trehalose alleviates the inhibitory effects of salt stress in strawberry plants. Acta Physiol Plant 41(7):1–11

    Article  CAS  Google Scholar 

  132. Feng Y, Chen X, He Y, Kou X, Xue Z (2019) Effects of exogenous trehalose on the metabolism of sugar and abscisic acid in tomato seedlings under salt stress. Trans Tianjin Univ 25(5):451–471

    Article  CAS  Google Scholar 

  133. Tian L, Qu D, Bi W, Xie T, Li J (2017) Trehalose alleviates the negative effects of salinity on the growth and physiological characteristics of maize seedlings. Acta Pratacul Sin 26(8):131–138

    Google Scholar 

  134. Abdallah MM-S, El Sebai TN, Ramadan AAE-M, El-Bassiouny HMS (2020) Physiological and biochemical role of proline, trehalose, and compost on enhancing salinity tolerance of quinoa plant. Bull Natl Res Cent 44(1):1–13

    Article  Google Scholar 

  135. Habibi G, Ajory N (2015) The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. J Plant Res 128(6):987–994

    Article  CAS  PubMed  Google Scholar 

  136. Hossain MA, Mostofa MG, Fujita M (2013) Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. Mol Plant Breed 4(7):50–70

  137. Mansour MMF, Ali EF (2017) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68

    Article  CAS  PubMed  Google Scholar 

  138. Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ et al (2012) Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol 158(3):1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hassanein R, Bassuony F, Baraka D, Khalil R (2009) Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. 1-Changes in growth, some relevant metabolic activities and oxidative defense systems. Res J Agric Biol Sci 5(1):72–81

    CAS  Google Scholar 

  140. Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol 163(1):11–18

    Article  CAS  PubMed  Google Scholar 

  141. Zhonghua T, Yanju L, Xiaorui G, Yuangang Z (2011) The combined effects of salinity and nitrogen forms on Catharanthus roseus: the role of internal ammonium and free amino acids during salt stress. J Plant Nutr Soil Sci 174(1):135–144

    Article  Google Scholar 

  142. Sadak MS, El-Bassiouny HMS, Dawood MG (2019) Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bull Natl Res Cent 43(1):1–11

    Article  Google Scholar 

  143. Xu Z, Mahmood K, Rothstein SJ (2017) ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol 58(8):1364–1377

    Article  CAS  PubMed  Google Scholar 

  144. Xu Z, Rothstein SJ (2018) ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signal Behav 13(3):1364–1377

    Article  Google Scholar 

  145. Luo Y, Li F, Wang G, Yang X, Wang W (2010) Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biol Plant 54(3):495–501

    Article  CAS  Google Scholar 

  146. Mishra P, Bhoomika K, Dubey R (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250(1):3–19

    Article  CAS  PubMed  Google Scholar 

  147. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  148. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ma C, Wang Z, Kong B, Lin T (2013) Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regul 70(3):275–285

    Article  CAS  Google Scholar 

  150. Feki K, Tounsi S, Masmoudi K, Brini F (2017) The durum wheat plasma membrane Na+/H+ antiporter SOS1 is involved in oxidative stress response. Protoplasma 254(4):1725–1734

    Article  CAS  PubMed  Google Scholar 

  151. Badran EG, Abogadallah GM, Nada RM, Nemat Alla MM (2015) Role of glycine in improving the ionic and ROS homeostasis during NaCl stress in wheat. Protoplasma 252(3):835–844

    Article  CAS  PubMed  Google Scholar 

  152. Hong C-Y, Kao CH (2008) NaCl-induced expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings is not associated with osmotic component. Plant Signal Behav 3(3):199–201

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kim D, Shibato J, Agrawal GK, Fujihara S, Iwahashi H, Kim DH et al (2007) Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol Cells 24(1):45

    CAS  PubMed  Google Scholar 

  154. Yang Y, Yao Y, Li J, Zhang J, Zhang X, Hu L, Ding D, Bakpa EP, Xie J (2022) Trehalose alleviated salt stress in tomato by regulating ROS metabolism, photosynthesis, osmolyte synthesis, and trehalose metabolic pathways. Front Plant Sci 13:772948

  155. Du L, Li S, Ding L, Cheng X, Kang Z, Mao H (2022) Genome-wide analysis of trehalose-6-phosphate phosphatases (TPP) gene family in wheat indicates their roles in plant development and stress response. BMC Plant Biol 22(1):1–20

    Article  Google Scholar 

  156. Islam MA, Rahman MM, Rahman MM, Jin X, Sun L, Zhao K et al (2021) In silico and transcription analysis of trehalose-6-phosphate phosphatase gene family of wheat: trehalose synthesis genes contribute to salinity. Drought Stress Leaf Senescence Genes 12(11):1652

    CAS  PubMed  Google Scholar 

  157. Akram NA, Shafiq S, Ashraf M, Aisha R, Sajid MA (2016) Drought-induced anatomical changes in radish (Raphanus sativus L.) leaves supplied with trehalose through different modes. Arid Land Res Manag 30(4):412–420

    Article  CAS  Google Scholar 

  158. Khafagy M, Arafa A, El-Banna M (2009) Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. Aust J Crop Sci 3(5):257–267

    CAS  Google Scholar 

  159. Joshi R, Sahoo KK, Singh AK, Anwar K, Pundir P, Gautam RK et al (2020) Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. J Exp Bot 71(2):653–668

    Article  CAS  PubMed  Google Scholar 

  160. Islam MO, Kato H, Shima S, Tezuka D, Matsui H, Imai R (2019) Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene 685:42–49

    Article  CAS  PubMed  Google Scholar 

  161. Vishal B, Krishnamurthy P, Ramamoorthy R, Kumar PP (2019) Os TPS 8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytol 221(3):1369–1386

    Article  CAS  PubMed  Google Scholar 

  162. Taha SR, Seleiman MF, Alhammad BA, Alkahtani J, Alwahibi MS, Mahdi AH (2020) Activated Yeast extract enhances growth, anatomical structure, and productivity of Lupinus termis L. plants under actual salinity conditions. Agronomy 11(1):74

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Muhammad Aamer for proof reading of paper and valuable suggestions to improve quality of work. The authors also extend their appreciation to the Deanship of Scientific Research, King Khalid University for supporting this work through research groups program under Grant Number R.G.P. 2/17/43.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MN, MUH and ANS; writing-original draft preparation: MN, MUH and ANS; writing-review: MUC, AM, MH, SA, MB, AR, MAT, HASA and SHQ. Figures prepare: MB and AR.

Corresponding authors

Correspondence to Muhammad Umair Hassan or Adnan Noor Shah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, M., Hassan, M.U., Chattha, M.U. et al. Trehalose: a promising osmo-protectant against salinity stress—physiological and molecular mechanisms and future prospective. Mol Biol Rep 49, 11255–11271 (2022). https://doi.org/10.1007/s11033-022-07681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07681-x

Keywords

Navigation