Skip to main content
Log in

The role of the PTEN/mTOR axis in clinical response of rectal cancer patients

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Preoperative chemoradiotherapy has long been accepted as a method to improve survival and lifetime quality of rectal cancer patients. However, physiologic effects of these therapies largely depend on the resistance of cells to the radiation, type of chemotherapeutic agents and individual responses. As one of the signaling cascades involved in chemo- or radiation- resistance, the present study focused on several proteins involved in pTEN/Akt/mTOR pathway to explore their prognostic significance.

Materials and methods

Samples from advanced stage rectal cancer patients were analyzed to detect expression levels of pTEN/Akt/mTOR pathway related proteins pTEN, mLST8, REDD1, BNIP3, SAG and NOXA, together with p53, by RT-qPCR. Kaplan–Meier analysis was used to assess expression-survival relation and correlations among all proteins and clinicopathological features were statistically analyzed.

Results.

Except p53, none of the proteins showed prognostic significance. High p53 expression presented clear impact on overall survival and disease free survival. It was also significantly related to pathologic complete response. p53 showed high correlation to local recurrence as well. On the other hand, strong correlation was observed with PTEN expression and tumor response, but not with survival. High associations were also observed between mLST8/REDD1, PTEN and NOXA, confirming their role in the same cascade.

Conclusion

The contentious role of p53 as a prognostic biomarker in colorectal cancer was further affirmed, while PTEN and REDD1 could be suggested as potential candidates. Additionally, NOXA emerges as a conjunctive element for different signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kulendran M, Stebbing JF, Marks CG, Rockall TA (2011) Predictive and prognostic factors in colorectal cancer: a personalized approach. Cancers 3:1622–1638. https://doi.org/10.3390/cancers3021622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dayde D, Tanaka I, Jain R, Tai MC, Taguchi A (2017) Predictive and prognostic molecular biomarkers for response to neoadjuvant chemoradiation in rectal cancer. Int J Mol Sci 18:573. https://doi.org/10.3390/ijms18030573

    Article  CAS  PubMed Central  Google Scholar 

  3. Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M, Molinari F, De Dosso S, Saletti P et al (2009) Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS ONE 4:e7287. https://doi.org/10.1371/journal.pone.0007287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun Y, Tian H, Wang L (2015) Effects of PTEN on the proliferation and apoptosis of colorectal cancer cells via the phosphoinositol-3-kinase/Akt pathway. Oncol Rep 33:1828–1836. https://doi.org/10.3892/or.2015.3804

    Article  CAS  PubMed  Google Scholar 

  5. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 307:1098–1101. https://doi.org/10.1126/science.1106148

    Article  CAS  PubMed  Google Scholar 

  6. Chan CH, Jo U, Kohrman A, Rezaeian AH, Chou PC, Logothetis C, Lin HK (2014) Posttranslational regulation of Akt in human cancer. Cell Biosci 4(1):59. https://doi.org/10.1186/2045-3701-4-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ozden SA, Ozyurt H, Ozgen Z, Kilinc O, Oncel M, Gul AE, Karadayi N, Serakinci N, Kan B, Orun O (2011) Prognostic role of sensitive-to-apoptosis gene expression in rectal cancer. World J Gastroenterol 17:4905–4910. https://doi.org/10.3748/wjg.v17.i44.4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mega Tiber P, Baloglu L, Ozden S, Ozgen Z, Ozyurt H, Eren M, Orun O (2014) The association of apoptotic protein expressions sensitive to apoptosis gene, p73 and p53 with the prognosis of cervical carcinoma. Onco Targets Ther 7:2161–2168. https://doi.org/10.2147/OTT.S71448

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jia L, Yang J, Hao X, Zheng M, He H, Xiong X, Xu L, Sun Y (2010) Validation of SAG/RBX2/ROC2 E3 ubiquitin ligase as an anticancer and radiosensitizing target. Clin Cancer Res 20116:814–824. https://doi.org/10.1158/1078-0432.CCR-09-1592

    Article  CAS  Google Scholar 

  11. Wei D, Sun Y (2010) Small ring finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases: the role in cancer and as cancer targets. Genes Cancer 1:700–707. https://doi.org/10.1177/1947601910382776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao Y, Xiong X, Sun Y (2011) DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF (βTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44:304–316. https://doi.org/10.1016/j.molcel.2011.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P et al (2011) mTOR drives its own activation via SCF(βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 44:290–303. https://doi.org/10.1016/j.molcel.2011.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Løes IM, Immervoll H, Sorbye H, Angelsen JH, Horn A, Knappskog S, Lønning PE (2016) Impact of KRAS, BRAF, PIK3CA, TP53 status and intraindividual mutation heterogeneity on outcome after liver resection for colorectal cancer metastases. Int J Cancer 139:647–656. https://doi.org/10.1002/ijc.30089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsilimigras DI, Ntanasis-Stathopoulos I, Bagante F, Moris D, Cloyd J, Spartalis E, Pawlik TM (2018) Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: a systematic review of the current evidence. Surg Oncol 27:280–288. https://doi.org/10.1016/j.suronc.2018.05.012

    Article  PubMed  Google Scholar 

  16. Chen MB, Wu XY, Yu R, Li C, Wang LQ, Shen W, Lu PH (2012) P53 status as a predictive biomarker for patients receiving neoadjuvant radiation-based treatment: a meta-analysis in rectal cancer. PLoS ONE 7:e45388. https://doi.org/10.1371/journal.pone.0045388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huh JW, Lee WY, Kim SH, Park YA, Cho YB, Yun SH et al (2015) Immunohistochemical detection of p53 expression in patients with preoperative chemoradiation for rectal cancer: association with prognosis. Yonsei Med J 56:82–88. https://doi.org/10.3349/ymj.2015.56.1.82

    Article  PubMed  Google Scholar 

  18. Lu Y, Gao J, Lu Y (2015) Down-expression pattern of Ku70 and p53 coexisted in colorectal cancer. Med Oncol 32:98. https://doi.org/10.1007/s12032-015-0519-9

    Article  CAS  PubMed  Google Scholar 

  19. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13:283–296. https://doi.org/10.1038/nrm3330

    Article  CAS  PubMed  Google Scholar 

  20. Leslie NR, Downes CP (2004) PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382:1–11. https://doi.org/10.1042/BJ20040825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150. https://doi.org/10.1146/annurev.pathol.4.110807.092311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chow LM, Baker SJ (2006) PTEN function in normal and neoplastic growth. Cancer Lett 241:184–196. https://doi.org/10.1016/j.canlet.2005.11.042

    Article  CAS  PubMed  Google Scholar 

  23. Sawai H, Yasuda A, Ochi N, Ma J, Matsuo Y, Wakasugi T et al (2008) Loss of PTEN expression is associated with colorectal cancer liver metastasis and poor patient survival. BMC Gastroenterol 8:56. https://doi.org/10.1186/1471-230X-8-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eklöf V, Wikberg ML, Edin S, Dahlin AM, Jonsson BA, Öberg Å, Rutegård J, Palmqvist R (2013) The prognostic role of KRAS, BRAF, PIK3CA and PTEN in colorectal cancer. Br J Cancer 108:2153–2163. https://doi.org/10.1038/bjc.2013.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW (2001) Regulation of PTEN transcription by p53. Mol Cell 8:317–325. https://doi.org/10.1016/S1097-2765(01)00323-9

    Article  CAS  PubMed  Google Scholar 

  26. Hettinger K, Vikhanskaya F, Poh MK, Lee MK, de Belle I, Zhang JT, Reddy SA, Sabapathy K (2007) c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ 14:218–229. https://doi.org/10.1038/sj.cdd.4401946

    Article  CAS  PubMed  Google Scholar 

  27. Bermúdez Brito M, Goulielmaki E, Papakonstanti EA (2015) Focus on PTEN regulation. Front Oncol 5:166. https://doi.org/10.3389/fonc.2015.00166

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bohn BA, Mina S, Krohn A, Simon R, Kluth M, Harasimowicz S et al (2013) Altered PTEN function caused by deletion or gene disruption is associated with poor prognosis in rectal but not in colon cancer. Hum Pathol 4:1524–1533. https://doi.org/10.1016/j.humpath.2012.12.006

    Article  CAS  Google Scholar 

  29. Wang X, Cao X, Sun R, Tang C, Tzankov A, Zhang J et al (2018) Clinical significance of PTEN deletion, mutation, and loss of PTEN expression in de novo diffuse large B-cell lymphoma. Neoplasia 20:574–593. https://doi.org/10.1016/j.neo.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li S, Shen Y, Wang M, Yang J, Lv M, Li P, Chen Z, Yang J (2017) Loss of PTEN expression in breast cancer: association with clinicopathological characteristics and prognosis. Oncotarget 8:32043–32054. https://doi.org/10.18632/oncotarget.16761

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao J, Chen F, Zhou Q, Pan W, Wang X, Xu J, Ni L, Yang H (2016) Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco Targets Ther 9:1589–1597. https://doi.org/10.2147/OTT.S102421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khanna A, Bhushan B, Chauhan PS, Saxena S, Gupta DK, Siraj F (2018) High mTOR expression independently prognosticates poor clinical outcome to induction chemotherapy in acute lymphoblastic leukemia. Clin Exp Med 18:221–227. https://doi.org/10.1007/s10238-017-0478-x

    Article  CAS  PubMed  Google Scholar 

  33. Kaibori M, Shikata N, Sakaguchi T, Ishizaki M, Matsui K, Iida H et al (2015) Influence of rictor and raptor expression of mTOR signaling on long-term outcomes of patients with hepatocellular carcinoma. Dig Dis Sci 60:919–928. https://doi.org/10.1007/s10620-014-3417-7

    Article  CAS  PubMed  Google Scholar 

  34. Karlsson E, Pérez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T, Sgroi DC, Nordenskjöld B, Hallbeck AL, Stål O (2013) The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res 15:R96. https://doi.org/10.1186/bcr3557

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kakumoto K, Ikeda J, Okada M, Morii E, Oneyama C (2015) mLST8 promotes mTOR-mediated tumor progression. PLoS ONE 10:e0119015. https://doi.org/10.1371/journal.pone.0119015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10:995–1005. https://doi.org/10.1016/s1097-2765(02)00706-2

    Article  CAS  PubMed  Google Scholar 

  37. Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S et al (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 22:2283–2293. https://doi.org/10.1128/MCB.22.7.2283-2293.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katiyar S, Liu E, Knutzen CA, Lang ES, Lombardo CR, Sankar S, Toth JI, Petroski MD, Ronai Z, Chiang GG (2009) REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase. EMBO Rep 10:866–872. https://doi.org/10.1038/embor.2009.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, You M, Guan KL (2007) Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem 282:35803–35813. https://doi.org/10.1074/jbc.M705231200

    Article  CAS  PubMed  Google Scholar 

  40. Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64:5338–5346. https://doi.org/10.1158/0008-5472.CAN-04-0089

    Article  CAS  PubMed  Google Scholar 

  41. Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y, Akino K (2005) Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11:1021–1027

    Article  CAS  Google Scholar 

  42. Jia W, Chang B, Sun L, Zhu H, Pang L, Tao L et al (2014) REDD1 and p-AKT over-expression may predict poor prognosis in ovarian cancer. Int J Clin Exp Pathol 7:5940–5949

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng Y, Song K, Shang W, Chen L, Wang C, Pang B, Wang N (2020) REDD1 overexpression in oral squamous cell carcinoma may predict poor prognosis and correlates with high microvessel density. Oncol Lett 19:431–441. https://doi.org/10.3892/ol.2019.11070

    Article  CAS  PubMed  Google Scholar 

  44. Chang B, Meng J, Zhu H, Du X, Sun L, Wang L, Li S, Yang G (2018) Overexpression of the recently identified oncogene REDD1 correlates with tumor progression and is an independent unfavorable prognostic factor for ovarian carcinoma. Diagn Pathol 13:87. https://doi.org/10.1186/s13000-018-0754-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koop EA, van Laar T, van Wichen DF, de Weger RA, Ev W, van Diest PJ (2009) Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features. BMC Cancer 9:175. https://doi.org/10.1186/1471-2407-9-175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun Y, Tan M, Duan H, Swaroop M (2001) SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions. Antioxid Redox Signal 3:635–650. https://doi.org/10.1089/15230860152542989

    Article  CAS  PubMed  Google Scholar 

  47. Chanalaris A, Sun Y, Latchman DS, Stephanou A (2003) SAG attenuates apoptotic cell death caused by simulated ischaemia/reoxygenation in rat cardiomyocytes. J Mol Cell Cardiol 35:257–264. https://doi.org/10.1016/s0022-2828(03)00003-8

    Article  CAS  PubMed  Google Scholar 

  48. Jia L, Sun Y (2011) SCF E3 ubiquitin ligases as anticancer targets. Curr Cancer Drug Targets 11:347–356. https://doi.org/10.2174/156800911794519734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058. https://doi.org/10.1126/science.288.5468.1053

    Article  CAS  PubMed  Google Scholar 

  50. Flinterman M, Guelen L, Ezzati-Nik S, Killick R, Melino G, Tominaga K, Mymryk JS, Gäken J, Tavassoli M (2005) E1A activates transcription of p73 and Noxa to induce apoptosis. J Biol Chem 280:5945–5959. https://doi.org/10.1074/jbc.M406661200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Esra AKDENIZ for her valuable contribution on biostatistical evaluations.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SÖ, ZÖ and HÖ: material preparation and all clinical applications; PY, OK and PMT: all experimental, data collection and analyses; OO: conception, management of the project, preparation of the first draft of the manuscript all authors commented on previous versions of the manuscript, read and approved the final form.

Corresponding author

Correspondence to Oya Orun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Marmara University School of Medicine Ethics Board; with Protocol Number: 09.2015.275; Date: 02.10.2015.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

This manuscript does not contain any individual person’s data in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2022_7665_MOESM1_ESM.tif

Supplementary file1 (TIF 803 KB) Supplementary Figure S1 Representative network of PTEN/mTOR axis proteins involved in this study: (a) mTOR is an element in growth factor induction, but also regulated by nutrient depletion, hypoxia and energy stresses. mTORC1 activity relies on GTP-loaded Rheb and this interaction could be inhibited during hypoxia by BNIP3 (b) Hypoxia also inhibits mTORC1 through REDD1/DDIT4 dependent TSC1/TSC2 complex activity as a GTPase (GAP) for Rheb (c) p53 downregulates mTOR pathway through induction of PTEN, TSC2 and REDD1. Akt-Mdm2-p53 forms a negative-loop for p53 regulation, while PTEN-Akt-Mdm2-p53 forms a positive feedback. (d) mLST8 is a scaffolding element for both complexes. It reduces mTORC2 mediated phosphorylation of Akt and inhibits 4E-BP1 phosphorylation in cancer cells. (e) SAG is a component of SCF E3 Ubq ligase, actively involved in DEPTOR degradation, as well as it shows anti-apoptotic effect through NOXA degradation. SAG expression is also induced by hypoxia through HIF-1. Kaplan-Meier analysis of p53 and 10-year overall survival, together with Spearman correlations represented in Figure 1 and Table 3 were also summarized at the right column

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orun, O., Özden, S., Kılınç, O. et al. The role of the PTEN/mTOR axis in clinical response of rectal cancer patients. Mol Biol Rep 49, 8461–8472 (2022). https://doi.org/10.1007/s11033-022-07665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07665-x

Keywords

Navigation