Skip to main content

Advertisement

Log in

Therapeutic effect of lycopene in lipopolysaccharide nephrotoxicity through alleviation of mitochondrial dysfunction, inflammation, and oxidative stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Sepsis-associated acute kidney injury (AKI) accompanies a higher mortality in intensive care patients. High-dose lipopolysaccharides (LPS) as an endotoxin is usually used to model AKI in rodents. Lycopene is a fat-soluble carotenoid with proved protective effects in different condition. Rationale and purpose of the study. This research work was designed to assess the effect of lycopene in LPS murine AKI.

Methods and results

LPS was injected (intraperitoneally) at 10 mg/kg to induce AKI and lycopene was given (orally) at 5 or 20 mg/kg. Pretreatment of LPS group with lycopene (20 mg/kg) lowered serum BUN, creatinine, and cystatin C and alleviated renal indices of oxidative stress consisting of malondialdehyde and reactive oxygen species and elevated level of catalase activity, superoxide dismutase activity, and glutathione peroxidase activity. In addition, lycopene (20 mg/kg) attenuated renal neutrophil infiltration and reduced renal inflammation, improved mitochondrial membrane potential, and increased gene expression for PGC1-α as a key regulator of mitochondrial biogenesis. In addition, lycopene appropriately reduced level and gene expression of inflammation-related transcription factors including NF-kB and TLR4 and improved level and gene expression of Nrf2 as an important transcription factor related to antioxidant system. Besides, lycopene prevented histopathological changes following LPS in periodic acid-Schiff staining.

Conclusions

Collectively, this study revealed that lycopene has favorable effects by means of amelioration of mitochondrial dysfunction, oxidative stress, and inflammation and accordingly could protect against LPS-induced AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AKI:

Acute kidney injury

BUN:

Blood urea nitrogen

DCF-DA:

Dichlorofluorescein diacetate

ERK:

Extracellular signal-regulated kinase

FRAP:

Ferric reducing antioxidant power

GPX:

Glutathione peroxidase

HO-1:

Heme oxygenase 1

IFNγ:

Interferon gamma

IL-6:

Interleukin-6

JNK:

C-Jun N-terminal kinase

LPS:

Lipopolysaccharide

MDA:

Malondialdehyde

MAPK:

Mitogen-activated protein kinase

MMP:

Mitochondrial membrane potential

MPO:

Myeloperoxidase

NGAL:

Neutrophil gelatinase-associated lipocalin

NF-κB:

Nuclear factor-kappaB

Nrf2:

Nuclear factor erythroid-2-related factor 2

PAS:

Periodic acid-Schiff

PGC1-α:

Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

2-Thiobarbituric acid

TLR4:

Toll-like receptor 4

TAC:

Total anti-oxidant capacity

t-BHP:

Tert-butyl hydroperoxide

TNFα:

Tumor necrosis factor α

TCA:

Trichloroacetic acid

References

  1. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA et al (2013) Acute kidney injury: an increasing global concern. Lancet 382:170–179

    Article  Google Scholar 

  2. Lei L, Li L, Zhang H (2017) Advances in the diagnosis and treatment of acute kidney injury in cirrhosis patients. Biomed Res Int 2017:8523649. https://doi.org/10.1155/2017/8523649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M et al (2017) Acute kidney injury in sepsis. Intensive Care Med 43:816–828. https://doi.org/10.1007/s00134-017-4755-7

    Article  CAS  PubMed  Google Scholar 

  4. Liang NN, Zhao Y, Guo YY, Zhang ZH, Gao L, Yu DX et al (2022) Mitochondria-derived reactive oxygen species are involved in renal cell ferroptosis during lipopolysaccharide-induced acute kidney injury. Int Immunopharmacol 107:108687. https://doi.org/10.1016/j.intimp.2022.108687

    Article  CAS  PubMed  Google Scholar 

  5. He T, Yang L, Wu D (2022) Effect of interferon regulatory factor 2 on inflammatory response and oxidative stress in lipopolysaccharide-induced acute kidney injury. Drug Dev Res. https://doi.org/10.1002/ddr.21919

    Article  PubMed  Google Scholar 

  6. Ding Y, Zheng Y, Huang J, Peng W, Chen X, Kang X et al (2019) UCP2 ameliorates mitochondrial dysfunction, inflammation, and oxidative stress in lipopolysaccharide-induced acute kidney injury. Int Immunopharmacol 71:336–349. https://doi.org/10.1016/j.intimp.2019.03.043

    Article  CAS  PubMed  Google Scholar 

  7. Kang HG, Lee HK, Cho KB, Park SI (2021) A review of natural products for prevention of acute kidney injury. Medicina (Kaunas). https://doi.org/10.3390/medicina57111266

    Article  Google Scholar 

  8. Hedayati N, Naeini MB, Nezami A, Hosseinzadeh H, Wallace Hayes A, Hosseini S et al (2018) Protective effect of lycopene against chemical and natural toxins: a review. BioFactors. https://doi.org/10.1002/biof.1458

    Article  PubMed  Google Scholar 

  9. Imran M, Ghorat F, Ul-Haq I, Ur-Rehman H, Aslam F, Heydari M et al (2020) Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants (Basel). https://doi.org/10.3390/antiox9080706

    Article  Google Scholar 

  10. Sadek KM, Lebda MA, Abouzed TK, Nasr SM, El-Sayed Y (2018) The molecular and biochemical insight view of lycopene in ameliorating tramadol-induced liver toxicity in a rat model: implication of oxidative stress, apoptosis, and MAPK signaling pathways. Environ Sci Pollut Res Int 25:33119–33130. https://doi.org/10.1007/s11356-018-3265-7

    Article  CAS  PubMed  Google Scholar 

  11. Fenni S, Hammou H, Astier J, Bonnet L, Karkeni E, Couturier C et al (2017) Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201601083

    Article  PubMed  Google Scholar 

  12. Bandeira ACB, da Silva RC, Rossoni JVJ, Figueiredo VP, Talvani A, Cangussu SD et al (2017) Lycopene pretreatment improves hepatotoxicity induced by acetaminophen in C57BL/6 mice. Bioorg Med Chem 25:1057–1065. https://doi.org/10.1016/j.bmc.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  13. Huang C, Wen C, Yang M, Gan D, Fan C, Li A et al (2019) Lycopene protects against t-BHP-induced neuronal oxidative damage and apoptosis via activation of the PI3K/Akt pathway. Mol Biol Rep 46:3387–3397. https://doi.org/10.1007/s11033-019-04801-y

    Article  CAS  PubMed  Google Scholar 

  14. Mohamadin AM, Elberry AA, Mariee AD, Morsy GM, Al-Abbasi FA (2012) Lycopene attenuates oxidative stress and heart lysosomal damage in isoproterenol induced cardiotoxicity in rats: a biochemical study. Pathophysiology 19:121–130. https://doi.org/10.1016/j.pathophys.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  15. Li MZ, Zhao Y, Wang HR, Talukder M, Li JL (2021) Lycopene preventing dehp-induced renal cell damage is targeted by aryl hydrocarbon receptor. J Agric Food Chem 69:12853–12861. https://doi.org/10.1021/acs.jafc.1c05250

    Article  CAS  PubMed  Google Scholar 

  16. Jiang FW, Yang ZY, Bian YF, Cui JG, Zhang H, Zhao Y et al (2021) The novel role of the aquaporin water channel in lycopene preventing DEHP-induced renal ionic homeostasis disturbance in mice. Ecotoxicol Environ Saf 226:112836. https://doi.org/10.1016/j.ecoenv.2021.112836

    Article  CAS  PubMed  Google Scholar 

  17. Elsayed A, Elkomy A, Elkammar R, Youssef G, Abdelhiee EY, Abdo W et al (2021) Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci Rep 11:13979. https://doi.org/10.1038/s41598-021-93196-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheriff SA, Shaik Ibrahim S, Devaki T, Chakraborty S, Agarwal S, Pérez-Sánchez H (2017) Lycopene prevents mitochondrial dysfunction during d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in albino rats. J Proteome Res 16:3190–3199. https://doi.org/10.1021/acs.jproteome.7b00176

    Article  CAS  PubMed  Google Scholar 

  19. Khajevand-Khazaei MR, Mohseni-Moghaddam P, Hosseini M, Gholami L, Baluchnejadmojarad T, Roghani M (2018) Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via suppression of inflammation and up-regulation of antioxidants and SIRT1. Eur J Pharmacol 833:307–313. https://doi.org/10.1016/j.ejphar.2018.06.019

    Article  CAS  PubMed  Google Scholar 

  20. Jiang W, Guo MH, Hai X (2016) Hepatoprotective and antioxidant effects of lycopene on non-alcoholic fatty liver disease in rat. World J Gastroenterol 22:10180–10188. https://doi.org/10.3748/wjg.v22.i46.10180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sedaghat R, Roghani M, Khalili M (2014) Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-Parkinsonian rat model. Iran J Pharm Res 13:227–234

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Samie A, Sedaghat R, Baluchnejadmojarad T, Roghani M (2018) Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life Sci 210:132–139. https://doi.org/10.1016/j.lfs.2018.08.074

    Article  CAS  PubMed  Google Scholar 

  23. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC, Boca Raton, pp 283–284

    Google Scholar 

  24. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  25. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  27. Pulli B, Ali M, Forghani R, Schob S, Hsieh KL, Wojtkiewicz G et al (2013) Measuring myeloperoxidase activity in biological samples. PLoS ONE 8:e67976

    Article  CAS  Google Scholar 

  28. Xu S, Chen YH, Tan ZX, Xie DD, Zhang C, Zhang ZH et al (2015) Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury. Sci Rep 5:18687. https://doi.org/10.1038/srep18687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khajevand-Khazaei MR, Azimi S, Sedighnejad L, Salari S, Ghorbanpour A, Baluchnejadmojarad T et al (2019) S-allyl cysteine protects against lipopolysaccharide-induced acute kidney injury in the C57BL/6 mouse strain: involvement of oxidative stress and inflammation. Int Immunopharmacol 69:19–26. https://doi.org/10.1016/j.intimp.2019.01.026

    Article  CAS  PubMed  Google Scholar 

  30. Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J et al (2014) A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 41:3–11. https://doi.org/10.1097/shk.0000000000000052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang F, Lu S, Jin S, Chen K, Li J, Huang B et al (2018) Lidanpaidu prescription alleviates lipopolysaccharide-induced acute kidney injury by suppressing the NF-kappaB signaling pathway. Biomed Pharmacother 99:245–252. https://doi.org/10.1016/j.biopha.2018.01.059

    Article  CAS  PubMed  Google Scholar 

  32. Bai J, Zhao J, Cui D, Wang F, Song Y, Cheng L et al (2018) Protective effect of hydroxysafflor yellow A against acute kidney injury via the TLR4/NF-kappaB signaling pathway. Sci Rep 8:9173. https://doi.org/10.1038/s41598-018-27217-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bocharov AV, Wu T, Baranova IN, Birukova AA, Sviridov D, Vishnyakova TG et al (2016) Synthetic amphipathic helical peptides targeting cd36 attenuate lipopolysaccharide-induced inflammation and acute lung injury. J Immunol 197:611–619. https://doi.org/10.4049/jimmunol.1401028

    Article  CAS  PubMed  Google Scholar 

  34. Lee DH, Park MH, Hwang CJ, Hwang JY, Yoon HS, Yoon DY et al (2016) CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury. Arch Toxicol 90:1151–1162. https://doi.org/10.1007/s00204-015-1530-9

    Article  CAS  PubMed  Google Scholar 

  35. Molitoris BA (2014) Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Investig 124:2355–2363

    Article  CAS  Google Scholar 

  36. Azizi-Malekabadi H, Abareshi A, Beheshti F, Marefati N, Norouzi F, Soukhtanloo M et al (2018) The effect of captopril on inflammation-induced liver injury in male rats. Toxin Rev. https://doi.org/10.1080/15569543.2018.1517802

    Article  Google Scholar 

  37. Stahl W, Junghans A, de Boer B, Driomina ES, Briviba K, Sies H (1998) Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett 427:305–308

    Article  CAS  Google Scholar 

  38. Engelmann NJ, Clinton SK, Erdman JW Jr (2011) Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene. Adv Nutr 2:51–61

    Article  CAS  Google Scholar 

  39. Jackson H, Braun CL, Ernst H (2008) The chemistry of novel xanthophyll carotenoids. Am J Cardiol 101:S50–S57

    Article  Google Scholar 

  40. Pinto C, Rodríguez-Galdón B, Cestero JJ, Macías P (2013) Hepatoprotective effects of lycopene against carbon tetrachloride-induced acute liver injury in rats. J Funct Foods 5:1601–1610

    Article  CAS  Google Scholar 

  41. Karahan I, Ateşşahin A, Yılmaz S, Çeribaşı A, Sakin F (2005) Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology 215:198–204

    Article  CAS  Google Scholar 

  42. Dai C, Tang S, Deng S, Zhang S, Zhou Y, Velkov T et al (2015) Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway. Antimicrob Agents Chemother 59:579–585

    Article  Google Scholar 

  43. Pavlakou P, Liakopoulos V, Eleftheriadis T, Mitsis M, Dounousi E (2017) Oxidative stress and acute kidney injury in critical illness: pathophysiologic mechanisms-biomarkers-interventions, and future perspectives. Oxid Med Cell Longev 2017:6193694. https://doi.org/10.1155/2017/6193694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma X, Dang C, Kang H, Dai Z, Lin S, Guan H et al (2015) Saikosaponin-D reduces cisplatin-induced nephrotoxicity by repressing ROS-mediated activation of MAPK and NF-kappaB signalling pathways. Int Immunopharmacol 28:399–408. https://doi.org/10.1016/j.intimp.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  45. Hussien YA, Abdalkadim H, Mahbuba W, Hadi NR, Jamil DA, Al-Aubaidy HA (2020) The nephroprotective effect of lycopene on renal ischemic reperfusion injury: a mouse model. Indian J Clin Biochem 35:474–481. https://doi.org/10.1007/s12291-019-00848-7

    Article  CAS  PubMed  Google Scholar 

  46. Zhang C, Walker LM, Mayeux PR (2000) Role of nitric oxide in lipopolysaccharide-induced oxidant stress in the rat kidney. Biochem Pharmacol 59:203–209

    Article  CAS  Google Scholar 

  47. Yu K, Zhang J, Cao Z, Ji Q, Han Y, Song M et al (2018) Lycopene attenuates AFB1-induced renal injury with the activation of the Nrf2 antioxidant signaling pathway in mice. Food Funct 9:6427–6434. https://doi.org/10.1039/c8fo01301b

    Article  CAS  PubMed  Google Scholar 

  48. Sanchis-Gomar F, García-Giménez JL, Gómez-Cabrera MC, Pallardó FV (2014) Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr Pharm Des 20:5619–5633. https://doi.org/10.2174/1381612820666140306095106

    Article  CAS  PubMed  Google Scholar 

  49. Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13:629–646. https://doi.org/10.1038/nrneph.2017.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tran M, Parikh SM (2014) Mitochondrial biogenesis in the acutely injured kidney. Nephron Clin Pract 127:42–45. https://doi.org/10.1159/000363715

    Article  CAS  PubMed  Google Scholar 

  51. Pak ES, Uddin MJ, Ha H (2020) Inhibition of Src family kinases ameliorates lps-induced acute kidney injury and mitochondrial dysfunction in mice. Int J Mol Sci 21:8246. https://doi.org/10.3390/ijms21218246

    Article  CAS  PubMed Central  Google Scholar 

  52. Tran M, Tam D, Bardia A, Bhasin M, Rowe GC, Kher A et al (2011) PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest 121:4003–4014. https://doi.org/10.1172/jci58662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li D, Liu G, Wu Y (2022) RORA alleviates LPS-induced apoptosis of renal epithelial cells by promoting PGC-1α transcription. Clin Exp Nephrol. https://doi.org/10.1007/s10157-022-02184-2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zeng YC, Peng LS, Zou L, Huang SF, Xie Y, Mu GP et al (2017) Protective effect and mechanism of lycopene on endothelial progenitor cells (EPCs) from type 2 diabetes mellitus rats. Biomed Pharmacother 92:86–94. https://doi.org/10.1016/j.biopha.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Y, Li MZ, Talukder M, Luo Y, Shen Y, Wang HR et al (2020) Effect of mitochondrial quality control on the lycopene antagonizing DEHP-induced mitophagy in spermatogenic cells. Food Funct 11:5815–5826. https://doi.org/10.1039/d0fo00554a

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research project was financially supported by a research Grant (no. 963250) from National Institute for Medical Research Development (NIMAD).

Author information

Authors and Affiliations

Authors

Contributions

SS and AG performed the experiments, NM helped in writing the manuscript and data analysis, TB and MR supervised the study and reviewed the paper. All authors read and reviewed the final manuscript.

Corresponding author

Correspondence to Mehrdad Roghani.

Ethics declarations

Conflict of interest

The authors hereby report no conflicts of interest. The authors take all responsible for the content and writing of this article.

Ethical approval

All procedures of this research study were in accordance to the Guide for the Care and Use of Laboratory Animals, set by the NIH and certified by National Institute for Medical Research Development (NIMAD) (no. IR.NIMAD.REC.1396.301).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salari, S., Ghorbanpour, A., Marefati, N. et al. Therapeutic effect of lycopene in lipopolysaccharide nephrotoxicity through alleviation of mitochondrial dysfunction, inflammation, and oxidative stress. Mol Biol Rep 49, 8429–8438 (2022). https://doi.org/10.1007/s11033-022-07661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07661-1

Keywords