Skip to main content
Log in

The correlation between multiple congenital anomalies hypotonia seizures syndrome 2 and PIGA: a case of novel PIGA germline variant and literature review

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

PIGA (PIG class A) gene codes for the PIG-A protein, which is a catalytic subunit of GPI-GlcNAc transferase. GPI-anchored proteins play an important role in the metabolism of mammals. Somatic variants of PIGA genes in bone marrow hematopoietic stem cells often result in paroxysmal nocturnal haemoglobinuria, and the germline PIGA variants cause multiple congenital anomalies hypotonia seizures syndrome 2 (MCAHS2) because of glycosylphosphatidylinositol metabolic abnormalities.

Methods

Whole exome sequencing was performed on peripheral blood sample of the patient with MCAHS2. A novel germline PIGA variant was found, and Sanger sequencing was performed as verification for the variant. After that, we used the keywords to retrieve relevant reports and provided a literature review.

Results

A novel hemizygous germline PIGA variant (NM_002641.3:c.971G > A) at exon4 was identified through whole exome sequencing. And it was a highly probable pathogenic variant. Sanger sequencing yielded consistent results. The missense variant cause change of p.(Cys324Tyr) in the transcription product according to the predicted outcomes.

Conclusion

We reported a case of MCAHS2 caused by a novel PIGA variant. Following a review of the literature, we suggested that MCAHS2 should be considered as a disorder spectrum consisting of core symptoms, multi-system impairment, and premature death. The core symptoms include hypotonia, psychomotor delay, epilepsy (intractable epilepsy mostly) and early death. Core symptoms nearly happened to almost all patients. Meanwhile, MCAHS2 involves a wide range of organ and system impairments with changeable form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kinoshita T (2014) Biosynthesis and deficiencies of glycosylphosphatidylinositol. Proc Jpn Acad Ser B Phys Biol Sci 90(4):130–143. doi: https://doi.org/10.2183/pjab.90.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu YS, Fujita M (2020) Mammalian GPI-anchor modifications and the enzymes involved. Biochem Soc Trans 48(3):1129–1138. doi: https://doi.org/10.1042/BST20191142

    Article  CAS  PubMed  Google Scholar 

  3. Yadav U, Khan MA (2018) Targeting the GPI biosynthetic pathway. Pathog Glob Health 112(3):115–122. doi: https://doi.org/10.1080/20477724.2018.1442764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kinoshita T (2016) Glycosylphosphatidylinositol (GPI) anchors: Biochemistry and cell biology: Introduction to a thematic review series. J Lipid Res 57(1):4–5. doi: https://doi.org/10.1194/jlr.E065417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujita M, Kinoshita T (2012) GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta 1821(8):1050–1058. doi: https://doi.org/10.1016/j.bbalip.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  6. Kinoshita T (2020) Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol 10(3):190290. doi: https://doi.org/10.1098/rsob.190290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knaus A, Pantel JT, Pendziwiat M, Hajjir N, Zhao M, Hsieh TCet (2018) Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Med 10(1):3. doi: https://doi.org/10.1186/s13073-017-0510-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Canalejo K, Riera CN, Felippo M, Sarandria C, Aixala M (2014) Paroxysmal nocturnal haemoglobinuria. Experience over a 10 years period. Int J Lab Hematol 36(2):213–221. doi: https://doi.org/10.1111/ijlh.12156

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Lin Y, Chen L, Qin L, Tan H, Zou J (2020) Identification of acquired PIGA mutations and additional variants by next-generation sequencing in paroxysmal nocturnal hemoglobinuria. Int J Lab Hematol 42(4):473–481. doi: https://doi.org/10.1111/ijlh.13228

    Article  PubMed  Google Scholar 

  10. Agrahari AK, Pieroni E, Gatto G, Kumar A (2019) The impact of missense mutation in PIGA associated to paroxysmal nocturnal hemoglobinuria and multiple congenital anomalies-hypotonia-seizures syndrome 2: A computational study. Heliyon 5(10):e2709. doi: https://doi.org/10.1016/j.heliyon.2019.e02709

    Article  Google Scholar 

  11. Li D, Sun X, Yu F, Perle MA, Araten D, Boeke JD (2021) Application of counter-selectable marker PIGA in engineering designer deletion cell lines and characterization of CRISPR deletion efficiency. Nucleic Acids Res 49(5):2642–2654. doi: https://doi.org/10.1093/nar/gkab035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neuhofer CM, Funke R, Wilken B, Knaus A, Altmuller J, Nurnberg P (2020) A novel mutation in PIGA associated with multiple congenital Anomalies-Hypotonia-Seizure syndrome 2 (MCAHS2) in a boy with a combination of severe epilepsy and gingival hyperplasia. Mol Syndromol 11(1):30–37. doi: https://doi.org/10.1159/000505797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morrison-Levy N, Borlot F, Jain P, Whitney R (2021) Early-Onset developmental and epileptic encephalopathies of infancy: An overview of the genetic basis and clinical features. Pediatr Neurol 116:85–94. doi: https://doi.org/10.1016/j.pediatrneurol.2020.12.001

    Article  PubMed  Google Scholar 

  14. Kato M, Saitsu H, Murakami Y, Kikuchi K, Watanabe S, Iai M (2014) PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology 82(18):1587–1596. doi: https://doi.org/10.1212/WNL.0000000000000389

    Article  CAS  PubMed  Google Scholar 

  15. Nashabat M, Al QX, Almakdob S, Altwaijri W, Ba-Armah DM, Hundallah K (2019) The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure 69:154–172. doi: https://doi.org/10.1016/j.seizure.2019.04.018

    Article  PubMed  Google Scholar 

  16. Hebbar M, Mefford HC (2020) Recent advances in epilepsy genomics and genetic testing. F1000Res 9. doi: https://doi.org/10.12688/f1000research.21366.1

  17. Perk YP, Mutlu AH (2020) PIGA-related epileptic encephalopathy demonstrating intrafamilial phenotypic heterogeneity. Acta Neurol Belg 120(5):1247–1250. doi: https://doi.org/10.1007/s13760-020-01403-5

    Article  Google Scholar 

  18. Fauth C, Steindl K, Toutain A, Farrell S, Witsch-Baumgartner M, Karall D (2016) A recurrent germline mutation in the PIGA gene causes Simpson-Golabi-Behmel syndrome type 2. Am J Med Genet a 170A(2):392–402. doi: https://doi.org/10.1002/ajmg.a.37452

    Article  CAS  PubMed  Google Scholar 

  19. van der Crabben SN, Harakalova M, Brilstra EH, van Berkestijn FM, Hofstede FC, van Vught AJ Expanding the spectrum of phenotypes associated with germline PIGA mutations: A child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities. Am J Med Genet a et al (2014) ; 164A(1): 29–35.doi: https://doi.org/10.1002/ajmg.a.36184

  20. Lin WD, Chou IC, Tsai FJ, Hong SY (2018) A novel PIGA mutation in a Taiwanese family with early-onset epileptic encephalopathy. Seizure 58:52–54. doi: https://doi.org/10.1016/j.seizure.2018.03.025

    Article  PubMed  Google Scholar 

  21. Yang J, Wang Q, Zhuo Q, Tian H, Li W, Luo F A likely pathogenic variant putatively affecting splicing of PIGA identified in a multiple congenital anomalies hypotonia-seizures syndrome 2 (MCAHS2) family pedigree via whole-exome sequencing. Mol Genet Genomic Med et al (2018) ; 6(5): 739 – 48.doi: https://doi.org/10.1002/mgg3.428

  22. Cash SJ, Mcgue BP, Reynolds TS, Crist ER (2020) PIGA related disorder as a range of phenotypes rather than two distinct subtypes. Brain Dev-Jpn 42(2):205–210. doi: https://doi.org/10.1016/j.braindev.2019.10.002

    Article  Google Scholar 

  23. Swoboda KJ, Margraf RL, Carey JC, Zhou H, Newcomb TM (2014) Coonrod Eet al. A novel germline PIGA mutation in Ferro-Cerebro-Cutaneous syndrome: A neurodegenerative X-linked epileptic encephalopathy with systemic iron-overload. Am J Med Genet a 164A(1):17–28. doi: https://doi.org/10.1002/ajmg.a.36189

    Article  CAS  PubMed  Google Scholar 

  24. Low KJ, James M, Sharples PM, Eaton M, Jenkinson S (2018) Study Det al. A novel PIGA variant associated with severe X-linked epilepsy and profound developmental delay. Seizure 56:1–3. doi: https://doi.org/10.1016/j.seizure.2018.01.013

    Article  PubMed  Google Scholar 

  25. Tarailo-Graovac M, Sinclair G, Stockler-Ipsiroglu S, Van Allen M, Rozmus J, Shyr C The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet J Rare Dis et al (2015) ; 10: 23.doi: https://doi.org/10.1186/s13023-015-0243-8

  26. Johnston JJ, Gropman AL, Sapp JC, Teer JK, Martin JM, Liu CFet (2012) The phenotype of a germline mutation in PIGA: The gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am J Hum Genet 90(2):295–300. doi: https://doi.org/10.1016/j.ajhg.2011.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joshi C, Kolbe DL, Mansilla MA, Mason S, Smith RJ, Campbell CA (2016) Ketogenic diet - a novel treatment for early epileptic encephalopathy due to PIGA deficiency. Brain Dev 38(9):848–851. doi: https://doi.org/10.1016/j.braindev.2016.04.004

    Article  PubMed  Google Scholar 

  28. Flores-Torres J, Carver JD, Sanchez-Valle A (2021) PIGA mutations can mimic neonatal hemochromatosis. Pediatrics 147(3). doi: https://doi.org/10.1542/peds.2020-0918

  29. Kim YO, Yang JH, Park C, Kim SK, Kim MK, Shin MGet (2016) A novel PIGA mutation in a family with X-linked, early-onset epileptic encephalopathy. Brain Dev-Jpn 38(8):750–754. doi: https://doi.org/10.1016/j.braindev.2016.02.008

    Article  Google Scholar 

  30. Xie L, Song X, Li T, Jiang L (2018) A novel germline PIGA mutation causes early-onset epileptic encephalopathies in Chinese monozygotic twins. Brain Develop 40(7):596–600. doi: https://doi.org/10.1016/j.braindev.2018.02.009

    Article  Google Scholar 

  31. Olson HE, Kelly M, LaCoursiere CM, Pinsky R, Tambunan D, Shain C (2017) Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol 81(3):419–429. doi: https://doi.org/10.1002/ana.24883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L (2017) ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521. doi: https://doi.org/10.1111/epi.13709

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bayat A, Knaus A, Pendziwiat M, Afenjar A, Barakat TS (2020) Bosch Fet al. Lessons learned from 40 novel PIGA patients and a review of the literature. Epilepsia 61(6):1142–1155. doi: https://doi.org/10.1111/epi.16545

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patient and their families for their selflessness in agreeing to publish patient’s clinical information. Thanks colleagues that studied under Professor Chunquan Cai for their help in the research process, especially Jie Zheng, Xiufang Zhi and Linjie Pu.

Funding

The present study was supported by National Natural Science Foundation of China [grant number 81771589], the Program of Tianjin Science and Technology Plan [grant no. 18ZXDBSY00170] and the Public Health and Technology project of Tianjin [grant no. ZC20120, TJWJ2021ZD007].

Author information

Authors and Affiliations

Authors

Contributions

Xiangyu Liu and Jing Meng participated in the conception of the study and writing of the manuscript. Jinhui Ma made great contributions to clinical information collection of the case and provided abundant knowledge of electroencephalogram. Jianbo Shu, Xiangyu Liu, Jing Meng Chunyu Gu performed the experiments and provided the planning and analysis of the application of sequencing technology. Chunquan Cai, Dong Li and Xiaofang Chen made a review of previous literature. Chunyu Gu and Jing Meng revised the article critically for important intelectual cintent. Chunquan Cai revised the manuscript and submitted the manuscript. All of the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dong Li or Chunquan Cai.

Ethics declarations

Conflict of interest

The authors declare that there were not any financial or non-financial interests related to the work that could be constructed as a potential conflict of interest.

Ethics Statement

The study was approved by the Ethics Committee of Tianjin Children’s Hospital (Tianjin University Children’s Hospital). Written informed consent of the patient was obtained from his parents. All study procedures adhered to the tenets of the Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiangyu Liu Jing Meng and Jinhui Ma were equally responsible for the work described in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Meng, J., Ma, J. et al. The correlation between multiple congenital anomalies hypotonia seizures syndrome 2 and PIGA: a case of novel PIGA germline variant and literature review. Mol Biol Rep 49, 10469–10477 (2022). https://doi.org/10.1007/s11033-022-07614-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07614-8

Keywords

Navigation