Skip to main content
Log in

Aneuploids and its increment on diversity of Lippia alba polyploid complex: genetic aspects and origin

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Aneuploidy is associated with add or lack of individual chromosomes. The knowledge regarding aneuploidy is still rare in wild and tropical populations. Lippia alba is a tropical polyploid complex naturally formed, with 2x, 3x, 4x, 6x, and aneuploid individuals. The species presents pharmacological and medicinal importance, due to its essential oil compounds, which are related to the ploidal level. Considering the singularity of aneuploids emergence and stability, we proposed to investigate putative cytotypes involved in the aneuploids formation.

Methods and results

Molecular, cytogenetic, reproductive, and chemical approaches were adopted. The results showed that the aneuploids possibly have independent origin considering the genetic, chemical and karyotypical profiles. The chemical composition of aneuploids is related to genetic similarity. The aneuploid origin may involve 2x and 3x cytotypes being possible to rise four scenarios of crosses to explain that.

Conclusions

The results, in general, contribute to the comprehension of the origin of aneuploids and highlight the genetic profile of these accessions as a key element on the understanding of the chemical profile of L. alba accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All generated sequences were deposited in GenBank (Online Resource 3).

References

  1. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. https://doi.org/10.1038/nature09916

    Article  CAS  PubMed  Google Scholar 

  2. Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207:454–467. https://doi.org/10.1111/nph.13491

    Article  PubMed  Google Scholar 

  3. Sutherland BL, Galloway LF (2021) Variation in heteroploid reproduction and gene flow across a polyploid complex: one size does not fit all. Ecol Evol 11:9676–9688. https://doi.org/10.1002/ece3.7

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Storme N, Mason A (2014) Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance. Curr Plant Biol 1:10–33. https://doi.org/10.1016/j.cpb.2014.09.002

    Article  Google Scholar 

  5. Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS (2018) Impact of whole-genome duplication events on diversification rates in angiosperms. Am J Bot 105:348–363. https://doi.org/10.1002/ajb2.1060

    Article  PubMed  Google Scholar 

  6. Van de Peer Y, Ashman TL, Soltis PS, Soltis DE (2021) Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33:11–26. https://doi.org/10.1093/plcell/koaa015

    Article  PubMed  Google Scholar 

  7. Henry IM, Dilkes BP, Young K, Watson B, Wu H, Comai L (2005) Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170:1979–1988. https://doi.org/10.1534/genetics.104.037788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186:1231–1245. https://doi.org/10.1534/genetics.110.121079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dang J, Wu T, Liang G, Wu D, He Q, Guo Q (2019) Identification and Characterization of a loquat aneuploid with novel leaf phenotypes. Hort Sci 54:804–808. https://doi.org/10.21273/HORTSCI13844-18

    Article  CAS  Google Scholar 

  10. Sokoloff DD, Skaptsov MV, Vislobokov NA, Smirnov SV, Shmakov AI, Remizowa MV (2021) Morphological characterization of diploid and triploid Acorus calamus (Acoraceae) from southern Western Siberia, parthenocarpy in sterile plants and occurrence of aneuploidy. Bot J Linn Soc 195:189–215. https://doi.org/10.1093/botlinnean/boaa081

    Article  Google Scholar 

  11. Considine MJ, Wan Y, D’Antuono MF, Zhou Q, Han M, Gao H, Wang M (2012) Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus. PLoS ONE 7(1):e29449. https://doi.org/10.1371/journal.pone.0029449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chester M, Lipman LJ, Gallagher JP, Soltis SP, Soltis DE (2013) An assessment of karyotype restructuring in the neoallotetraploid Tragopogon miscellus (Asteraceae). Chromosom Res 21:75–85. https://doi.org/10.1007/s10577-013-9339-y

    Article  CAS  Google Scholar 

  13. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Evol Syst 33:589–639. https://doi.org/10.1146/annurev.ecolsys.33.010802.150437

    Article  Google Scholar 

  14. Randolph L (1935) Cytogenetics of tetraploid maize. J Agric Res 50:591–605

    Google Scholar 

  15. Einset J (1947) Aneuploidy in relation to partial sterility in autotetraploid lettuce. Am J Bot 34:99–105. https://doi.org/10.2307/2437364

    Article  Google Scholar 

  16. Bingham E (1968) Aneuploids in seedling populations of tetraploid alfalfa, Medicago sativa L. Crop Sci 8:571–574. https://doi.org/10.2135/cropsci1968.0011183X000800050019x

    Article  Google Scholar 

  17. Zamora CM, Torres CA, Nuñez MB (2018) Antimicrobial activity and chemical composition of essential oils from Verbenaceae species growing in South America. Molecules 23:544. https://doi.org/10.3390/molecules23030544

    Article  CAS  Google Scholar 

  18. Reis AC, Sousa SM, Vale AA, Pierre PM, Franco AL, Campos JMS, Viccini LF (2014) Lippia alba (Verbenaceae): a new tropical autopolyploid complex? Am J Bot 101:1002–1012. https://doi.org/10.3732/ajb.1400149

    Article  PubMed  Google Scholar 

  19. Reis AC, Chester M, Sousa SM, Campos VR, Nascimento LSQ, Pacheco Júnior S, Franco AL, Viccini LF (2021) Chromosomal view of Lippia alba, a tropical polyploid complex under genome stabilization process. Protoplasma. https://doi.org/10.1007/s00709-021-01636-y

    Article  PubMed  Google Scholar 

  20. Lopes JML, Carvalho HH, Zorzatto C, Azevedo ALS, Machado MA, Salimena FRG, Grazul RM, Gitzendanner MA, Soltis DE, Soltis PS, Viccini LF (2020) Genetic relationships and polyploid origins in the Lippia alba complex. Am J Bot 107:466–476. https://doi.org/10.1002/ajb2.1443

    Article  PubMed  Google Scholar 

  21. Thiers B (2019) [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available in: http://sweetgum.nybg.org/ih/

  22. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  23. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Alex Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  24. Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed Central  Google Scholar 

  25. Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis, version 3.3. Website: http://www.mesquiteproject.org

  26. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 gateway computing environments workshop (GCE), 1– 8, 2010, New Orleans, LA, USA. https://doi.org/10.1109/GCE.2010.5676129

  27. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden

  28. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  29. Lopes JML, Matos EM, Zorzatto C, Azevedo ALS, Machado MA, Chester M, Viccini LF (2020) Development of microsatellite markers for Lippia alba and related Lippia species. Mol Biol Rep 47:4911–4915. https://doi.org/10.1007/s11033-020-05445-z

    Article  CAS  PubMed  Google Scholar 

  30. Rohlf FJ (2000) NTSYS-pc ver 2.11 Exeter Software, East Setauket, NY, USA

  31. Cruz CD (2006) Programa Genes: Análise multivariada e simulação. Editora UFV. Viçosa (MG). 175p

  32. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  Google Scholar 

  33. Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. Springerplus 3:431. https://doi.org/10.1186/2193-1801-3-431

    Article  PubMed  PubMed Central  Google Scholar 

  34. Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  35. Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888. https://doi.org/10.1093/aob/mcm152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann Bot 82(Suppl. 1):17–26. https://doi.org/10.1093/oxfordjournals.aob.a010312

    Article  Google Scholar 

  37. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051. https://doi.org/10.1126/science.220.4601.1049

    Article  CAS  PubMed  Google Scholar 

  38. Doležel J, Bartoš J (2005) Plant DNA Flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. https://doi.org/10.1093/aob/mci005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carvalho CR, Saraiva LS (1993) A new heterochromatin banding pattern revealed by modified HKG banding technique for maize chromosomes. Heredity 70:515–519. https://doi.org/10.1038/hdy.1993.74

    Article  Google Scholar 

  40. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

    Article  Google Scholar 

  41. Viccini LF, Silveira RS, do Vale AA, de Campos JMS, Reis AC, Oliveira SM, Grazul RM (2014) Citral and linalool content has been correlated to DNA content in Lippia alba (Mill.) N.E. Brown (Verbenaceae). Ind Crop Prod 59:14–19. https://doi.org/10.1016/j.indcrop.2014.04.028

    Article  CAS  Google Scholar 

  42. Julião SA, Ribeiro CDV, Lopes JML, Matos EM, Reis AC, Peixoto PHP, Machado MA, Azevedo ALS, Grazul RM, Viccini CJMS, LF, (2020) Induction of synthetic polyploids and assessment of genomic stability in Lippia alba. Front Plant Sci 11:292. https://doi.org/10.3389/fpls.2020.00292

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reis AC, Sousa SM, Viccini LF (2016) High frequency of cytomixis observed at zygotene in tetraploid Lippia alba. Plant Syst Evol 302:121–127. https://doi.org/10.1007/s00606-015-1249-3

    Article  Google Scholar 

  44. Souza CM, Zorzatto C, Quinhones CG, Lopes JML, Carvalho HH, Araújo WL, Viccini LF (2021) Deciphering ploidal levels of Lippia alba by using proteomics. Plant Physiol Biochem 167:385–389. https://doi.org/10.1016/j.plaphy.2021.08.018

    Article  CAS  PubMed  Google Scholar 

  45. Pavliková Z, Pastová L, Munzbergová Z (2017) Synthetic polyploids in Vicia cracca: methodology, effects on plant performance and aneuploidy. Plant Syst Evolut 303:827–839. https://doi.org/10.1007/s00606-017-1414-y

    Article  CAS  Google Scholar 

  46. Li Y, Ye T, Han C, Ye Z, Zhang J, Xiao S, Yuan D (2021) Cytogenetic analysis of interspecific hybridization in oil-tea (Camellia oleifera). Euphytica 217:1–12. https://doi.org/10.1007/s10681-020-02762-z

    Article  CAS  Google Scholar 

  47. Doyle JJ, Coate JE (2019) Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int J Plant Sci 180:1–52. https://doi.org/10.1086/700636

    Article  Google Scholar 

  48. Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, de Storme N, Hörandl E (2017) Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Plant Syst Evol 303:1093–1108. https://doi.org/10.1007/s00606-017-1435-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank J. B. Pinheiro (Esalq-USP) and R. Vieira (Embrapa Cenargen) for providing some of the Lippia alba samples. We also would like to thank to Bioinformatic Laboratory – UFV for helping with data analysis using GENES software.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (314443/2021-5); Fundação de Amparo à Pesquisa do Estado de Minas Gerais-Fapemig (CRA - RED-00053-16) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Capes.

Author information

Authors and Affiliations

Authors

Contributions

JL, VC, AR, EM, and LV conceived and designed the experiments. VC and EM carried out the flow cytometry analyses. AR performed the cytogenetic analyses. JL, MM, and AA performed the molecular analyses. RG analyzed the essential oil profile. JL, VC, AR, EM, and LV contributed to the writing of the manuscript. LV revised the manuscript. All authors listed have made a substantial, direct and intellectual contribution to the work, and approved the manuscript.

Corresponding author

Correspondence to Lyderson Facio Viccini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, J.M.L., Campos, V.R., Reis, A.C. et al. Aneuploids and its increment on diversity of Lippia alba polyploid complex: genetic aspects and origin. Mol Biol Rep 49, 7743–7752 (2022). https://doi.org/10.1007/s11033-022-07599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07599-4

Keywords

Navigation