Skip to main content
Log in

Syntaxin binding protein 2 in sertoli cells regulates spermatogonial stem cell maintenance through directly interacting with connexin 43 in the testes of neonatal mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Interactions between Sertoli and germ cells are essential for spermatogenesis and male fertility. However, the mechanism of action underlying these interactions in the testes remains largely unknown. In this study, we investigated the distribution and function of syntaxin binding protein 2 (STXBP2) in the mammalian testis.

Methods and results

First, we found that STXBP2 was mainly expressed in Sertoli cells. Then, to explore the function of STXBP2 in the testes, we assessed the effects of Stxbp2 knockdown on neonatal testicular and spermatogonial stem cell (SSC) development. Our results revealed that STXBP2 was required for the migration of Sertoli cells and germ cell survival. Mechanistically, we found that STXBP2 interacted with connexin 43 (Cx43) and regulated its expression.

Conclusions

Taken together, our results demonstrated a novel regulatory mechanism in which the STXBP2/Cx43 complex is essential for the maintenance of Sertoli–germline interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kanatsu-Shinohara M, Shinohara T (2013) Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol 29:163–187. https://doi.org/10.1146/annurev-cellbio-101512-122353

    Article  CAS  PubMed  Google Scholar 

  2. Sharma S, Hanukoglu A, Hanukoglu I (2018) Localization of epithelial sodium channel (ENaC) and CFTR in the germinal epithelium of the testis, Sertoli cells, and spermatozoa. J Mol Histol 49:195–208. https://doi.org/10.1007/s10735-018-9759-2

    Article  CAS  PubMed  Google Scholar 

  3. Crisostomo L, Alves MG, Gorga A, Sousa M, Riera MF, Galardo MN, Meroni SB, Oliveira PF (2018) Molecular mechanisms and signaling pathways involved in the nutritional support of spermatogenesis by Sertoli cells. Methods Mol Biol 1748:129–155. https://doi.org/10.1007/978-1-4939-7698-0_11

    Article  CAS  PubMed  Google Scholar 

  4. Yin J, Ni B, Tian ZQ, Yang F, Liao WG, Gao YQ (2017) Regulatory effects of autophagy on spermatogenesis. Biol Reprod 96:525–530. https://doi.org/10.1095/biolreprod.116.144063

    Article  PubMed  Google Scholar 

  5. Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M (2017) Identification of STXBP2 as a novel susceptibility locus for myocardial infarction in Japanese individuals by an exome-wide association study. Oncotarget 8:33527–33535. https://doi.org/10.18632/oncotarget.16536

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carr CM, Rizo J (2010) At the junction of SNARE and SM protein function. Curr Opin Cell Biol 22:488–495. https://doi.org/10.1016/j.ceb.2010.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cote M, Menager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, Al-Manjomi F, Al-Harbi M, Alangari A, Le Deist F, Gennery AR, Prince N, Cariou A, Nitschke P, Blank U, El-Ghazali G, Menasche G, Latour S, Fischer A (2009) de Saint Basile, Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 119:3765–3773. https://doi.org/10.1172/JCI40732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, Strauss J, Kasper B, Nurnberg G, Becker C, Maul-Pavicic A, Beutel K, Janka G, Griffiths G, Ehl S, Hennies HC (2009) Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 85:482–492. https://doi.org/10.1016/j.ajhg.2009.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cetica V, Santoro A, Gilmour KC, Sieni E, Beutel K, Pende D, Marcenaro S, Koch F, Grieve S, Wheeler R, Zhao F, Stadt U, Griffiths GM, Arico M (2010) STXBP2 mutations in children with familial haemophagocytic lymphohistiocytosis type 5. J Med Genet 47:595–600. https://doi.org/10.1136/jmg.2009.075341

    Article  CAS  PubMed  Google Scholar 

  10. Risley MS, Tan IP, Roy C, Saez JC (1992) Cell-, age- and stage-dependent distribution of connexin43 gap junctions in testes. J Cell Sci 103(Pt 1):81–96

    Article  CAS  Google Scholar 

  11. Brehm R, Zeiler M, Ruttinger C, Herde K, Kibschull M, Winterhager E, Willecke K, Guillou F, Lecureuil C, Steger K, Konrad L, Biermann K, Failing K, Bergmann M (2007) A sertoli cell-specific knockout of connexin43 prevents initiation of spermatogenesis. Am J Pathol 171:19–31. https://doi.org/10.2353/ajpath.2007.061171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chevallier D, Carette D, Segretain D, Gilleron J, Pointis G (2013) Connexin 43 a check-point component of cell proliferation implicated in a wide range of human testis diseases. Cell Mol Life Sci 70:1207–1220. https://doi.org/10.1007/s00018-012-1121-3

    Article  CAS  PubMed  Google Scholar 

  13. Carette D, Weider K, Gilleron J, Giese S, Dompierre J, Bergmann M, Brehm R, Denizot JP, Segretain D, Pointis G (2010) Major involvement of connexin 43 in seminiferous epithelial junction dynamics and male fertility. Dev Biol 346:54–67. https://doi.org/10.1016/j.ydbio.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  14. Gregory M, Kahiri CN, Barr KJ, Smith CE, Hermo L, Cyr DG, Kidder GM (2011) Male reproductive system defects and subfertility in a mutant mouse model of oculodentodigital dysplasia. Int J Androl 34:e630–641. https://doi.org/10.1111/j.1365-2605.2011.01224.x

    Article  CAS  PubMed  Google Scholar 

  15. Sridharan S, Simon L, Meling DD, Cyr DG, Gutstein DE, Fishman GI, Guillou F, Cooke PS (2007) Proliferation of adult sertoli cells following conditional knockout of the Gap junctional protein GJA1 (connexin 43) in mice. Biol Reprod 76:804–812. https://doi.org/10.1095/biolreprod.106.059212

    Article  CAS  PubMed  Google Scholar 

  16. Zheng B, Zhou Q, Guo Y, Shao B, Zhou T, Wang L, Zhou Z, Sha J, Guo X, Huang X (2014) Establishment of a proteomic profile associated with gonocyte and spermatogonial stem cell maturation and differentiation in neonatal mice. Proteomics 14:274–285. https://doi.org/10.1002/pmic.201300395

    Article  CAS  PubMed  Google Scholar 

  17. Shen C, Zhang K, Yu J, Guo Y, Gao T, Liu Y, Zhang X, Chen X, Yu Y, Cheng H, Zheng A, Li H, Huang X, Ding X, Zheng B (2018) Stromal interaction molecule 1 is required for neonatal testicular development in mice. Biochem Biophys Res Commun 504:909–915. https://doi.org/10.1016/j.bbrc.2018.09.044

    Article  CAS  PubMed  Google Scholar 

  18. Gao T, Lin M, Wu Y, Li K, Liu C, Zhou Q, Shen C, Zheng B, Huang X (2021) Transferrin receptor (TFRC) is essential for meiotic progression during mouse spermatogenesis. Zygote 29:169–175. https://doi.org/10.1017/S0967199420000659

    Article  CAS  PubMed  Google Scholar 

  19. Shen C, Yu J, Zhang X, Liu CC, Guo YS, Zhu JW, Zhang K, Yu Y, Gao TT, Yang SM, Li H, Zheng B, Huang XY (2019) Strawberry Notch 1 (SBNO1) promotes proliferation of spermatogonial stem cells via the noncanonical Wnt pathway in mice. Asian J Androl 21:345–350. https://doi.org/10.4103/aja.aja_65_18

    Article  CAS  PubMed  Google Scholar 

  20. Zheng B, Yu J, Guo Y, Gao T, Shen C, Zhang X, Li H, Huang X (2018) Cellular nucleic acid-binding protein is vital to testis development and spermatogenesis in mice. Reproduction 156:59–69. https://doi.org/10.1530/REP-17-0666

    Article  CAS  PubMed  Google Scholar 

  21. Zhao D, Shen C, Gao T, Li H, Guo Y, Li F, Liu C, Liu Y, Chen X, Zhang X, Wu Y, Yu Y, Lin M, Yuan Y, Huang X, Yang S, Yu J, Zhang J, Zheng B (2019) Myotubularin related protein 7 is essential for the spermatogonial stem cell homeostasis via PI3K/AKT signaling. Cell Cycle 18:2800–2813. https://doi.org/10.1080/15384101.2019.1661174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu J, Wu Y, Li H, Zhou H, Shen C, Gao T, Lin M, Dai X, Ou J, Liu M, Huang X, Zheng B, Sun F (2021) BMI1 Drives Steroidogenesis Through Epigenetically Repressing the p38 MAPK Pathway. Front Cell Dev Biol 9:665089. https://doi.org/10.3389/fcell.2021.665089

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gao T, Lin M, Shao B, Zhou Q, Wang Y, Chen X, Zhao D, Dai X, Shen C, Cheng H, Yang S, Li H, Zheng B, Zhong X, Yu J, Chen L, Huang X (2020) BMI1 promotes steroidogenesis through maintaining redox homeostasis in mouse MLTC-1 and primary Leydig cells. Cell Cycle 19:1884–1898. https://doi.org/10.1080/15384101.2020.1779471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang K, Xu J, Ding Y, Shen C, Lin M, Dai X, Zhou H, Huang X, Xue B, Zheng B (2021) BMI1 promotes spermatogonia proliferation through epigenetic repression of Ptprm. Biochem Biophys Res Commun 583:169–177. https://doi.org/10.1016/j.bbrc.2018.09.044

    Article  CAS  PubMed  Google Scholar 

  25. Zhou H, Shen C, Guo Y, Huang X, Zheng B, Wu Y (2022) The plasminogen receptor directs maintenance of spermatogonial stem cells by targeting BMI1. Mol Biol Rep. https://doi.org/10.1007/s11033-022-07289-1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xie M, Ma T, Xue J, Ma H, Sun M, Zhang Z, Liu M, Liu Y, Ju S, Wang Z, De W (2019) The long intergenic non-protein coding RNA 707 promotes proliferation and metastasis of gastric cancer by interacting with mRNA stabilizing protein HuR. Cancer Lett 443:67–79. https://doi.org/10.1016/j.canlet.2018.11.032

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Wu Y, Lin M, Wang G, Liu J, Xie M, Zheng B, Shen C, Shen J (2022) BMI1 promotes osteosarcoma proliferation and metastasis by repressing the transcription of SIK1. Cancer Cell Int 22:136. https://doi.org/10.1186/s12935-022-02552-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou J, Li J, Qian C, Qiu F, Shen Q, Tong R, Yang Q, Xu J, Zheng B, Lv J, Hou J (2022) LINC00624/TEX10/NF-kappaB axis promotes proliferation and migration of human prostate cancer cells. Biochem Biophys Res Commun 601:1–8. https://doi.org/10.1016/j.bbrc.2022.02.078

    Article  CAS  PubMed  Google Scholar 

  29. Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, Cui Y, Zhang X, Guo X, Li W, Liu M (2019) FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res 47:11755–11770. https://doi.org/10.1093/nar/gkz992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D (2020) Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A 117:1496–1503. https://doi.org/10.1073/pnas.1914677117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weng G, Wang E, Wang Z, Liu H, Zhu F, Li D, Hou T (2019) HawkDock: a web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Res 47:W322–W330. https://doi.org/10.1093/nar/gkz397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rode K, Weider K, Damm OS, Wistuba J, Langeheine M, Brehm R (2018) Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol 18:456–466. https://doi.org/10.1016/j.repbio.2018.08.001

    Article  PubMed  Google Scholar 

  33. de Rooij DG (2009) The spermatogonial stem cell niche. Microsc Res Tech 72:580–585. https://doi.org/10.1002/jemt.20699

    Article  CAS  PubMed  Google Scholar 

  34. Vinas-Gimenez L, Donadeu L, Alsina L, Rincon R, de la Campa EA, Esteve-Sole A, Catala A, Colobran R, de la Cruz X, Sayos J, Martinez-Gallo M (2020) Molecular analysis of the novel L243R mutation in STXBP2 reveals impairment of degranulation activity. Int J Hematol 111:440–450. https://doi.org/10.1007/s12185-019-02796-7

    Article  CAS  PubMed  Google Scholar 

  35. Pournami F, Upadhyay S, Nandakumar A, Prabhakar J, Jain N (2020) Familial hemophagocytic lymphohistiocytosis: a rare mutation of STXBP2 in exon 19. J Pediatr Genet 9:66–68. https://doi.org/10.1055/s-0039-1694778

    Article  CAS  PubMed  Google Scholar 

  36. Roscoe WA, Barr KJ, Mhawi AA, Pomerantz DK, Kidder GM (2001) Failure of spermatogenesis in mice lacking connexin43. Biol Reprod 65:829–838. https://doi.org/10.1095/biolreprod65.3.829

    Article  CAS  PubMed  Google Scholar 

  37. Roger C, Mograbi B, Chevallier D, Michiels JF, Tanaka H, Segretain D, Pointis G, Fenichel P (2004) Disrupted traffic of connexin 43 in human testicular seminoma cells: overexpression of Cx43 induces membrane location and cell proliferation decrease. J Pathol 202:241–246. https://doi.org/10.1002/path.1509

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81901532, and 81901533), Natural Science Foundation of Jiangsu Province (Grant No. BK20190188), Gusu Health Talent Program of Suzhou (Grant No. GSWS2020068), and the Top Talent Support Program for Young and Middle-aged People of Wuxi Health Committee (Grant No. BJ2020047).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: BZ, HL; performed the experiments: YW, CS; statistical analysis: TW, XH; wrote the paper: YW, BZ. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hong Li or Bo Zheng.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

The study protocol was approved by the Animal Ethical and Welfare Committee of Nanjing Medical University (Permit Number: 2004020).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1372.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Shen, C., Wu, T. et al. Syntaxin binding protein 2 in sertoli cells regulates spermatogonial stem cell maintenance through directly interacting with connexin 43 in the testes of neonatal mice. Mol Biol Rep 49, 7557–7566 (2022). https://doi.org/10.1007/s11033-022-07564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07564-1

Keywords

Navigation