Skip to main content

Advertisement

Log in

Study of ten causal genes in Turkish patients with clinically suspected maturity-onset diabetes of the young (MODY) using a targeted next-generation sequencing panel

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Maturity-onset diabetes of the young (MODY), which is the most common cause of monogenic diabetes, has an autosomal dominant pattern of inheritance and exhibits marked clinical and genetic heterogeneity. The aim of the current study was to investigate molecular defects in patients with clinically suspected MODY using a next-generation sequencing (NGS)-based targeted gene panel.

Methods

Candidate patients with clinical suspicion of MODY and their parents were included in the study. Molecular genetic analyses were performed on genomic DNA by using NGS. A panel of ten MODY-causal genes involving GCK, HNF1A, HNF1B, HNF4A, ABCC8, CEL, INS, KCNJ11, NEUROD1, PDX1 was designed and subsequently implemented to screen 40 patients for genetic variants.

Results

Ten different pathogenic or likely pathogenic variants were identified in MODY-suspected patients, with a diagnostic rate of 25%. Three variants of uncertain significance were also detected in the same screen. A novel pathogenic variant in the gene HNF1A (c.505_506delAA [p.Lys169AlafsTer18]) was described for the first time in this report. Intriguingly, we were able to detect variants associated with rare forms of MODY in our study population.

Conclusions

Our results suggest that in heterogenous diseases such as MODY, NGS analysis enables accurate identification of underlying molecular defects in a timely and cost-effective manner. Although MODY accounts for 2–5% of all diabetic cases, molecular genetic diagnosis of MODY is necessary for optimal long-term treatment and prognosis as well as for effective genetic counseling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fajans SS, Bell GI (2011 Aug) MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 34(8):1878–1884 PubMed PMID: 21788644. PMCID: PMC3142024. Epub 2011/07. https://doi.org/10.2337/dc11-0035

  2. Rubio-Cabezas O, Hattersley AT, Njolstad PR, Mlynarski W, Ellard S, White N, ISPAD Clinical Practice Consensus Guidelines 2014 et al (2014 Sep) The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 15 Suppl 20:47–64. PubMed PMID: 25182307. Epub 2014/ https://doi.org/10.1111/pedi.12192

  3. Peixoto-Barbosa R, Reis AF, Giuffrida FMA (2020) Update on clinical screening of maturity-onset diabetes of the young (MODY). Diabetol Metab Syndr 12:50 PubMed PMID: 32528556. PMCID: PMC7282127. Epub 2020. https://doi.org/10.1186/s13098-020-00557-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang H, Colclough K, Gloyn AL, Pollin TI (2021) Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest. Feb 1;131(3). PubMed PMID: 33529164. PMCID: PMC7843214. Epub 2021https://doi.org/10.1172/JCI142244

  5. Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, Butel MO et al Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature. 1992 Mar 12;356(6365):162-4. PubMed PMID: 1545870. Epub 1992/03https://doi.org/10.1038/356162a0

  6. Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M et al (1996) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature. Dec 5;384(6608):455-8. PubMed PMID: 8945470. Epub 1996/https://doi.org/10.1038/384455a0

  7. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ et al (1996) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature. Dec 5;384(6608):458 – 60. PubMed PMID: 8945471. Epub 1996/https://doi.org/10.1038/384458a0

  8. Bellanne-Chantelot C, Clauin S, Chauveau D, Collin P, Daumont M, Douillard C et al (2005 Nov) Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes 54(11):3126–3132 PubMed PMID: 16249435. Epub 2005/. https://doi.org/10.2337/diabetes.54.11.3126

  9. Boesgaard TW, Pruhova S, Andersson EA, Cinek O, Obermannova B, Lauenborg J et al Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY). BMC Med Genet. 2010 Mar 12;11:42. PubMed PMID: 20226046. PMCID: PMC2848224. Epub 2010https://doi.org/10.1186/1471-2350-11-42

  10. Bowman P, Flanagan SE, Edghill EL, Damhuis A, Shepherd MH, Paisey R et al (2012 Jan) Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia 55(1):123–127 PubMed PMID: 21989597. Epub 2011/. https://doi.org/10.1007/s00125-011-2319-x

  11. Bonnefond A, Philippe J, Durand E, Dechaume A, Huyvaert M, Montagne L et al (2012) Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS ONE 7(6):e37423 PubMed PMID: 22701567. PMCID: PMC3372463. Epub 2012. https://doi.org/10.1371/journal.pone.0037423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Timsit J, Saint-Martin C, Dubois-Laforgue D, Bellanne-Chantelot C (2016 Oct) Searching for Maturity-Onset Diabetes of the Young (MODY): When and What for? Can J Diabetes 40(5):455–461 PubMed PMID: 27103109. Epub 2016/04. https://doi.org/10.1016/j.jcjd.2015.12.005

  13. Yohe S, Thyagarajan B (2017 Nov) Review of Clinical Next-Generation Sequencing. Arch Pathol Lab Med 141(11):1544–1557 PubMed PMID: 28782984. Epub 2017/08/. https://doi.org/10.5858/arpa.2016-0501-RA

  14. Ellard S, Bellanne-Chantelot C, Hattersley AT, European Molecular Genetics Quality Network Mg. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young.Diabetologia. 2008Apr;51(4):546–53. PubMed PMID: 18297260. PMCID: PMC2270360. Epub 2008https://doi.org/10.1007/s00125-008-0942-y

  15. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015 May) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424 PubMed PMID: 25741868. PMCID: PMC4544753. Epub 2015/03. https://doi.org/10.1038/gim.2015.30

  16. UniProt C (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. Jan 8;49(D1):D480-D9. PubMed PMID: 33237286. PMCID: PMC7778908. Epub 2020/11https://doi.org/10.1093/nar/gkaa1100

  17. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res. Jan 1;28(1):235 – 42. PubMed PMID: 10592235. PMCID: PMC102472. Epub 1999/12https://doi.org/10.1093/nar/28.1.235

  18. Caswell RC, Snowsill T, Houghton JAL, Chakera AJ, Shepherd MH, Laver TW et al Noninvasive Fetal Genotyping by Droplet Digital PCR to Identify Maternally Inherited Monogenic Diabetes Variants. Clin Chem. 2020 Jul 1;66(7):958 – 65. PubMed PMID: 32533152. PMCID: PMC7611030. Epub 2020https://doi.org/10.1093/clinchem/hvaa104

  19. Johnson SR, Ellis JJ, Leo PJ, Anderson LK, Ganti U, Harris JE et al (2019 Feb) Comprehensive genetic screening: The prevalence of maturity-onset diabetes of the young gene variants in a population-based childhood diabetes cohort. Pediatr Diabetes 20(1):57–64 PubMed PMID: 30191644. Epub 2018/09. https://doi.org/10.1111/pedi.12766

  20. Lukasova P, Vcelak J, Vankova M, Vejrazkova D, Andelova K, Bendlova B (2008) Screening of mutations and polymorphisms in the glucokinase gene in Czech diabetic and healthy control populations. Physiol Res 57(Suppl 1):S99–S108 PubMed PMID: 18271687. Epub 2008. https://doi.org/10.33549/physiolres.931494

    Article  CAS  PubMed  Google Scholar 

  21. McKinney JL, Cao H, Robinson JF, Metzger DL, Cummings E, Riddell DC et al (2004 Jun) Spectrum of HNF1A and GCK mutations in Canadian families with maturity-onset diabetes of the young (MODY). Clin Invest Med 27(3):135–141 PubMed PMID: 15305805. Epub 2004/08/13

  22. Thomson KL, Gloyn AL, Colclough K, Batten M, Allen LI, Beards F et al (2003 Nov) Identification of 21 novel glucokinase (GCK) mutations in UK and European Caucasians with maturity-onset diabetes of the young (MODY). Hum Mutat 22(5):417 PubMed PMID: 14517956. Epub 2003. https://doi.org/10.1002/humu.9186

  23. Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S (1998 Jul) Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 19(3):268–270 PubMed PMID: 9662401. Epub 1998/07. https://doi.org/10.1038/953

  24. Tiedge M, Richter T, Lenzen S (2000 Mar) Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch Biochem Biophys 15(2):251–260 PubMed PMID: 10700381. Epub 2000. https://doi.org/10.1006/abbi.1999.1666

  25. Zerangue N, Schwappach B, Jan YN, Jan LY (1999 Mar) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22(3):537–548 PubMed PMID: 10197533. Epub 1999/. https://doi.org/10.1016/s0896-6273(00)80708-4

  26. Cha JY, Kim H, Kim KS, Hur MW, Ahn Y Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene. Cooperative role of hepatocyte nuclear factors 1alpha and 3beta.J Biol Chem. 2000 Jun16;275(24):18358–65. PubMed PMID: 10748140. Epub 2000/04 https://doi.org/10.1074/jbc.M909536199

  27. Wang H, Maechler P, Hagenfeldt KA, Wollheim CB Dominant-negative suppression of HNF-1alpha function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic beta-cell line.EMBO J. 1998 Nov16;17(22):6701–13. PubMed PMID: 9822613. PMCID: PMC1171015. Epub 1998 https://doi.org/10.1093/emboj/17.22.6701

  28. Caironi V, Schwitzgebel VM, Jornayvaz FR, Gariani K (2021) [MODY type diabetes: an often-misunderstood entity]. Rev Med Suisse. Jun 2;17(741):1062-6. PubMed PMID: 34077036. Epub 2021/06/03. Diabete de type MODY: une entite souvent meconnue

  29. Harris A, Naylor RN (2019) Pediatric Monogenic Diabetes: A Unique Challenge and Opportunity. Pediatr Ann. Aug 1;48(8):e319-e25. PubMed PMID: 31426100. Epub 2019/08https://doi.org/10.3928/19382359-20190730-02

  30. Sanyoura M, Philipson LH, Naylor R (2018) Monogenic Diabetes in Children and Adolescents: Recognition and Treatment Options. Curr Diab Rep. Jun 22;18(8):58. PubMed PMID: 29931562. PMCID: PMC6312113. Epub 2018https://doi.org/10.1007/s11892-018-1024-2

  31. Tatsi EB, Kanaka-Gantenbein C, Scorilas A, Chrousos GP, Sertedaki A (2020 Feb) Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy. Pediatr Diabetes 21(1):28–39 PubMed PMID: 31604004. Epub 2019/. https://doi.org/10.1111/pedi.12931

  32. Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T et al (2018) Genetic Testing of Maturity-Onset Diabetes of the Young Current Status and Future Perspectives. Front Endocrinol (Lausanne). 9:253. PubMed PMID: 29867778. PMCID: PMC5966560. Epub 2018 https://doi.org/10.3389/fendo.2018.00253

    Article  Google Scholar 

  33. Alkorta-Aranburu G, Carmody D, Cheng YW, Nelakuditi V, Ma L, Dickens JT et al (2014 Dec) Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 113(4):315–320 PubMed PMID: 25306193. PMCID: PMC4756642. Epub. https://doi.org/10.1016/j.ymgme.2014.09.007

  34. Sampathkumar G, Valiyaparambil PP, Kumar H, Bhavani N, Nair V, Menon U et al Low genetic confirmation rate in South Indian subjects with a clinical diagnosis of maturity-onset diabetes of the young (MODY) who underwent targeted next-generation sequencing for 13 genes.J Endocrinol Invest. 2021Nov 6. PubMed PMID: 34741762. Epub 2021/11 https://doi.org/10.1007/s40618-021-01698-y

  35. Breidbart E, Deng L, Lanzano P, Fan X, Guo J, Leibel RL et al Frequency and characterization of mutations in genes in a large cohort of patients referred to MODY registry. J Pediatr Endocrinol Metab. 2021 May 26;34(5):633-8. PubMed PMID: 33852230. Epub 2021/04https://doi.org/10.1515/jpem-2020-0501

  36. Liang H, Zhang Y, Li M, Yan J, Yang D, Luo S et al Recognition of maturity-onset diabetes of the young in China.J Diabetes Investig. 2021Apr; 12(4):501–9. PubMed PMID: 32741144. PMCID: PMC8015824. Epub 2020 https://doi.org/10.1111/jdi.13378

  37. Ozdemir TR, Kirbiyik O, Dundar BN, Abaci A, Kaya OO, Catli G et al Targeted next generation sequencing in patients with maturity-onset diabetes of the young (MODY). J Pediatr Endocrinol Metab. 2018 Dec 19;31(12):1295 – 304. PubMed PMID: 30447144. Epub 2018/11https://doi.org/10.1515/jpem-2018-0184

  38. Bacon JR, Lambert N, Phalp M, Plumb GW, Wright DJ (1987 Jan) Resolution of pea legumin subunits by high-performance liquid chromatography. Anal Biochem 160(1):202–210 PubMed PMID: 3565752. Epub 1987/. https://doi.org/10.1016/0003-2697(87)90631-2

  39. Agladioglu SY, Aycan Z, Cetinkaya S, Bas VN, Onder A, Peltek Kendirci HN et al (2016 Apr) Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing. J Pediatr Endocrinol Metab 29(4):487–496 PubMed PMID: 26669242. Epub 2015/12. https://doi.org/10.1515/jpem-2015-0039

  40. Anik A, Catli G, Abaci A, Bober E (2015) Mar;28(3–4):251 – 63 Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab. PubMed PMID: 25581748. Epub 2015/https://doi.org/10.1515/jpem-2014-0384

  41. Patel KA, Ozbek MN, Yildiz M, Guran T, Kocyigit C, Acar S et al Systematic genetic testing for recessively inherited monogenic diabetes: a cross-sectional study in paediatric diabetes clinics.Diabetologia. 2022Feb; 65(2):336–42. PubMed PMID: 34686905. PMCID: PMC8741690. Epub 2021 https://doi.org/10.1007/s00125-021-05597-y

  42. Dalva M, Lavik IK, El Jellas K, Gravdal A, Lugea A, Pandol SJ et al Pathogenic Carboxyl Ester Lipase (CEL) Variants Interact with the Normal CEL Protein in Pancreatic Cells. Cells. 2020 Jan 18;9(1). PubMed PMID: 31963687. PMCID: PMC7017060. Epub 2020https://doi.org/10.3390/cells9010244

  43. Delvecchio M, Pastore C, Giordano P (2020 Aug) Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Ther 11(8):1667–1685 PubMed PMID: 32583173. PMCID: PMC7376807. Epub 2020/06. https://doi.org/10.1007/s13300-020-00864-4

  44. Bacon S, Kyithar MP, Rizvi SR, Donnelly E, McCarthy A, Burke M et al (2016 Jul) Successful maintenance on sulphonylurea therapy and low diabetes complication rates in a HNF1A-MODY cohort. Diabet Med 33(7):976–984 PubMed PMID: 26479152. Epub 2015/. https://doi.org/10.1111/dme.12992

  45. Valkovicova T, Skopkova M, Stanik J, Gasperikova D (2019) Novel insights into genetics and clinics of the HNF1A-MODY. Endocr Regul. Apr 1;53(2):110 – 34. PubMed PMID: 31517624. Epub 2019/09https://doi.org/10.2478/enr-2019-0013

  46. Stanik J, Dusatkova P, Cinek O, Valentinova L, Huckova M, Skopkova M et al (2014 Mar) De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia 57(3):480–484 PubMed PMID: 24323243. Epub 2013. https://doi.org/10.1007/s00125-013-3119-2

  47. Raile K, Klopocki E, Holder M, Wessel T, Galler A, Deiss D et al (2009 Jul) Expanded clinical spectrum in hepatocyte nuclear factor 1b-maturity-onset diabetes of the young. J Clin Endocrinol Metab 94(7):2658–2664 PubMed PMID: 19417042. Epub 2009. https://doi.org/10.1210/jc.2008-2189

  48. Sztromwasser P, Michalak A, Malachowska B, Mludzik P, Antosik K, Hogendorf A et al (2020 May) A cross-sectional study of patients referred for HNF1B-MODY genetic testing due to cystic kidneys and diabetes. Pediatr Diabetes 21(3):422–430 PubMed PMID: 31825128. PMCID: PMC7217165. Epub 2019/12. https://doi.org/10.1111/pedi.12959

  49. De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P et al (2020 May) Update of variants identified in the pancreatic beta-cell KATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 41(5):884–905 PubMed PMID: 32027066. PMCID: PMC7187370. Epub 2020. https://doi.org/10.1002/humu.23995

  50. Klupa T, Kowalska I, Wyka K, Skupien J, Patch AM, Flanagan SE et al (2009 Sep) Mutations in the ABCC8 (SUR1 subunit of the K(ATP) channel) gene are associated with a variable clinical phenotype. Clin Endocrinol (Oxf) 71(3):358–362 PubMed PMID: 19021632. Epub 2008. https://doi.org/10.1111/j.1365-2265.2008.03478.x

  51. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN (2014 Jan) The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133(1):1–9 PubMed PMID: 24077912. PMCID: PMC3898141. Epub 2013. https://doi.org/10.1007/s00439-013-1358-4

  52. Petit P, Antoine M, Ferry G, Boutin JA, Lagarde A, Gluais L et al (2011) The active conformation of human glucokinase is not altered by allosteric activators. Acta Crystallogr D Biol Crystallogr. Nov;67(Pt 11):929 – 35. PubMed PMID: 22101819. Epub 2011/https://doi.org/10.1107/S0907444911036729

  53. Yalcintepe S, Ozguc Comlek F, Gurkan H, Demir S, Atli EI, Atli E et al The Application of Next Generation Sequencing Maturity Onset Diabetes of the Young Gene Panel in Turkish Patients from Trakya Region. J Clin Res Pediatr Endocrinol. 2021 Aug 23;13(3):320 – 31. PubMed PMID: 33565752. PMCID: PMC8388052. Epub 2021https://doi.org/10.4274/jcrpe.galenos.2021.2020.0285

  54. Bolu S, Eroz R, Dogan M, Arslanoglu I, Dundar I Genotype-Phenotype Characteristics of Turkish Children With Glucokinase Mutations Associated Maturity-Onset Diabetes of the Young.Indian Pediatr. 2020 Nov15;57(11):1037–9. PubMed PMID: 32533685. Epub 2020/06/14.

  55. Aykut A, Karaca E, Onay H, Goksen D, Cetinkalp S, Eren E et al Analysis of the GCK gene in 79 MODY type 2 patients: A multicenter Turkish study, mutation profile and description of twenty novel mutations.Gene. 2018 Jan30;641:186–9. PubMed PMID: 29056535. Epub 2017 https://doi.org/10.1016/j.gene.2017.10.057

  56. Ivanoshchuk DE, Shakhtshneider EV, Rymar OD, Ovsyannikova AK, Mikhailova SV, Orlov PS et al Analysis of APPL1 Gene Polymorphisms in Patients with a Phenotype of Maturity Onset Diabetes of the Young. J Pers Med. 2020 Aug 25;10(3). PubMed PMID: 32854233. PMCID: PMC7565648. Epub 2020https://doi.org/10.3390/jpm10030100

Download references

Acknowledgements

The authors are grateful to all patients and their families for their kind cooperation and assistance in this study.

Funding

This study was supported by Duzce University Scientific Research Projects Fund (project no.: BAP-2016.04.03.481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Doğan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

This study was approved by Duzce University Faculty of Medicine Non-Invasive Clinical Research Ethics Committee (approval no.: 2016/24). Informed consents were obtained from the patients or their parents who participated in the study and whose data were used for analyses. All authors gave consent to the final draft before it was published in Molecular Biology Reports.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, M., Eröz, R., Bolu, S. et al. Study of ten causal genes in Turkish patients with clinically suspected maturity-onset diabetes of the young (MODY) using a targeted next-generation sequencing panel. Mol Biol Rep 49, 7483–7495 (2022). https://doi.org/10.1007/s11033-022-07552-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07552-5

Keywords

Navigation