Skip to main content
Log in

Low humidity altered the gene expression profile of keratinocytes in a three-dimensional skin model

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The skin is constantly exposed to various external stimuli including humidity variations. Low humidity affects skin properties such as decreased water content of the stratum corneum, reduced skin elasticity, and itching. However, the effects of humidity on the skin cells are not completely understood. This study aimed to investigate how low humidity affects keratinocytes of the skin.

Methods and results

In the present study, the effects of dry environment on the gene expression profile of epidermal keratinocytes were demonstrated using a three-dimensional skin model (3D-skin), composed of keratinocytes. Exposure of 3D-skin to low humidity (relative humidity ~ 10%) increased the expression levels of various genes, including those related to signal transduction and immune system. Accordingly, p38 mitogen-activated protein kinase (MAPK) signaling in keratinocytes of the 3D-skin was activated in response to low humidity for 30 min. Additionally, several chemokines, such as chemokine (C-X-C motif) ligand 1 (CXCL1) and Chemokine (C-C motif) ligand 20 (CCL20), were up regulated after 3 h of exposure to low humidity.

Conclusions

We hypothesize that increased chemokine production may affect the immune system of the whole skin through chemoattractants. Our findings imply that keratinocytes sense low humidity and resultant activation of some cell-signaling pathways leads to variations in gene expression profiles including various chemokines. We provide evidence that keratinocytes adapt to external humidity variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3D-skin:

Three dimensional skin model

RH:

Relative humidity

TEWL:

Transepidermal water loss

SC:

Stratum corneum

DEGs:

Differentially expressed genes

MAPK:

Mitogen-activated protein kinases

KEGG:

Kyoto Encyclopedia of Genes and Genomes

CXCL1:

Chemokine (C-X-C motif) ligand 1

CXCL3:

Chemokine (C-X-C motif) ligand 3

CXCL8:

Chemokine (C-X-C motif) ligand 8

CXCL10:

Chemokine (C-X-C motif) ligand 10

CCL20:

Chemokine (C-C motif) ligand 20

CCL28:

Chemokine (C-C motif) ligand 28

IL-1:

Interleukin-1

PI3K:

Phosphatidylinositol 3-kinase

TNF:

Tumor necrosis factor

References

  1. Proksch E, Brandner JM, Jensen J-M (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072. https://doi.org/10.1111/j.1600-0625.2008.00786.x

    Article  PubMed  Google Scholar 

  2. Altemus M, Rao B, Dhabhar FS, Ding W, Granstein RD (2001) Stress-induced changes in skin barrier function in healthy women. J Investig Dermatol 117:309–317. https://doi.org/10.1046/j.1523-1747.2001.01373.x

    Article  CAS  PubMed  Google Scholar 

  3. Biniek K, Levi K, Dauskardt RH (2012) Solar UV radiation reduces the barrier function of human skin. Proc Natl Acad Sci 109:17111–17116. https://doi.org/10.1073/pnas.1206851109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Egawa M, Oguri M, Kuwahara T, Takahashi M (2002) Effect of exposure of human skin to a dry environment. Skin Res Technol 8:212–218. https://doi.org/10.1034/j.1600-0846.2002.00351.x

    Article  PubMed  Google Scholar 

  5. Chou T-C, Lin K-H, Wang S-M et al (2005) Transepidermal water loss and skin capacitance alterations among workers in an ultra-low humidity environment. Arch Dermatol Res 296:489–495. https://doi.org/10.1007/s00403-005-0541-4

    Article  PubMed  Google Scholar 

  6. T L, K A, B.-G D, et al (2002) Ocular, nasal, dermal and general symptoms among commercial airline crews. Int Arch Occup Environ Health 75:475–483. https://doi.org/10.1007/s00420-002-0330-8

    Article  CAS  Google Scholar 

  7. Silverberg JI, Hanifin J, Simpson EL (2013) Climatic factors are associated with childhood eczema prevalence in the United States. J Invest Dermatol 133:1752–1759. https://doi.org/10.1038/jid.2013.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hara M, Ma T, Verkman AS (2002) Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem 277:46616–46621. https://doi.org/10.1074/jbc.M209003200

    Article  CAS  PubMed  Google Scholar 

  9. Sato J, Denda M, Ashida Y, Koyama J (1998) Loss of water from the stratum corneum induces epidermal DNA synthesis in hairless mice. Arch Dermatol Res 290:634–637. https://doi.org/10.1007/s004030050364

    Article  CAS  PubMed  Google Scholar 

  10. Denda M, Sato J, Tsuchiya T, Elias PM, Feingold KR (1998) Low humidity stimulates epidermal DNA synthesis and amplifies the hyperproliferative response to barrier disruption: implication for seasonal exacerbations of inflammatory dermatoses. J Investig Dermatol 111:873–878. https://doi.org/10.1046/j.1523-1747.1998.00364.x

    Article  CAS  PubMed  Google Scholar 

  11. Denda M, Sato J, Masuda Y et al (1998) Exposure to a dry environment enhances epidermal permeability barrier function. J Investig Dermatol 111:858–863. https://doi.org/10.1046/j.1523-1747.1998.00333.x

    Article  CAS  PubMed  Google Scholar 

  12. Hosoi J, Hariya T, Denda M, Tsuchiya T (2000) Regulation of the cutaneous allergic reaction by humidity. Contact Dermatitis 42:81–84. https://doi.org/10.1034/j.1600-0536.2000.042002081.x

    Article  CAS  PubMed  Google Scholar 

  13. Ashida Y, Ogo M, Denda M (2001) Epidermal interleukin-1 alpha generation is amplified at low humidity: implications for the pathogenesis of inflammatory dermatoses. Br J Dermatol 144:238–243. https://doi.org/10.1046/j.1365-2133.2001.04007.x

    Article  CAS  PubMed  Google Scholar 

  14. Katoh M, Hamajima F, Ogasawara T, Hata K (2009) Assessment of human epidermal model LabCyte EPI-MODEL for in vitro skin irritation testing according to European Centre for the Validation of Alternative Methods (ECVAM)-validated protocol. J Toxicol Sci 34:327–334.

    Article  CAS  PubMed  Google Scholar 

  15. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  17. Kanehisa M, Araki M, Goto S et al (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484. https://doi.org/10.1093/nar/gkm882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moens U, Kostenko S, Sveinbjørnsson B (2013) The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes 4:101–133. https://doi.org/10.3390/genes4020101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thien A, Prentzell MT et al (2015) TSC1 activates TGF-β-Smad2/3 signaling in growth arrest and epithelial-to-mesenchymal transition. Dev Cell 32:617–630. https://doi.org/10.1016/j.devcel.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  20. Palomino DC, Marti LC (2015) Chemokines and immunity. Einstein (Sao Paulo) 13:469–473. https://doi.org/10.1590/S1679-45082015RB3438

    Article  Google Scholar 

  21. Mabuchi T, Chang TW, Quinter S, Hwang ST (2012) Chemokine receptors in the pathogenesis and therapy of psoriasis. J Dermatol Sci 65:4–11. https://doi.org/10.1016/j.jdermsci.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  22. Sisirak V, Vey N, Vanbervliet B et al (2011) CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. Blood 118:5130–5140. https://doi.org/10.1182/blood-2010-07-295626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harbor Perspect Biol 7:a016303. https://doi.org/10.1101/cshperspect.a016303

    Article  Google Scholar 

  24. Hirth M, Gandla J, Höper C et al (2020) CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients. Gastroenterology 159:665-681.e613. https://doi.org/10.1053/j.gastro.2020.04.037

    Article  CAS  PubMed  Google Scholar 

  25. Kadomoto S, Izumi K, Mizokami A (2020) The CCL20-CCR6 axis in cancer progression. Int J Mol Sci 21:5186. https://doi.org/10.3390/ijms21155186

    Article  CAS  PubMed Central  Google Scholar 

  26. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. https://doi.org/10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marzano AV, Ortega-Loayza AG, Heath M, Morse D, Genovese G, Cugno M (2019) Mechanisms of inflammation in neutrophil-mediated skin diseases. Front Immunol 10:1059. https://doi.org/10.3389/fimmu.2019.01059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hughes CE, Nibbs RJB (2018) A guide to chemokines and their receptors. FEBS J 285:2944–2971. https://doi.org/10.1111/febs.14466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zlotnik A, Yoshie O (2000) Chemokines. Immunity 12:121–127. https://doi.org/10.1016/s1074-7613(00)80165-x

    Article  CAS  PubMed  Google Scholar 

  30. De Filippo K, Dudeck A, Hasenberg M et al (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121:4930–4937. https://doi.org/10.1182/blood-2013-02-486217

    Article  CAS  PubMed  Google Scholar 

  31. Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S (2019) How do chemokines navigate neutrophils to the target site: dissecting the structural mechanisms and signaling pathways. Cell Signal 54:69–80. https://doi.org/10.1016/j.cellsig.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  32. Korbecki J, Kojder K, Siminska D et al (2020) CC chemokines in a tumor: a review of Pro-Cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci. https://doi.org/10.3390/ijms21218412

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gruber CN, Patel RS, Trachtman R et al (2020) Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell 183(982–995):e914. https://doi.org/10.1016/j.cell.2020.09.034

    Article  CAS  Google Scholar 

  34. Rawlings A, Harding C, Watkinson A, Banks J, Ackerman C, Sabin R (1995) The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res 287:457–464. https://doi.org/10.1007/BF00373429

    Article  CAS  PubMed  Google Scholar 

  35. Sato J, Denda M, Nakanishi J, Koyama J (1998) Dry condition affects desquamation of stratum corneum in vivo. J Dermatol Sci 18:163–169. https://doi.org/10.1016/s0923-1811(98)00037-1

    Article  CAS  PubMed  Google Scholar 

  36. Ashida Y, Denda M (2003) Dry environment increases mast cell number and histamine content in dermis in hairless mice. Br J Dermatol 149:240–247. https://doi.org/10.1046/j.1365-2133.2003.05408.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Masakatsu Ota for advice on experimental design. We thank Dr. Tetsuro Iwanaga for useful discussions. The authors would like to thank Ms. Manami Tanaka for technical assistance with the experiments.

Funding

This work was supported by Kracie Home Products, Ltd.

Author information

Authors and Affiliations

Authors

Contributions

KS and MH-C contributed to the study conception and design. KS performed the experiments, and analyzed the data. KS and MH-C wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariko Hara-Chikuma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinohara, K., Hara-Chikuma, M. Low humidity altered the gene expression profile of keratinocytes in a three-dimensional skin model. Mol Biol Rep 49, 7465–7474 (2022). https://doi.org/10.1007/s11033-022-07549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07549-0

Keywords

Navigation