Skip to main content
Log in

Regulation of vtg and VtgR in mud crab Scylla paramamosain by miR-34

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Vitellogenin (Vtg) is the precursor of major yolk protein and plays a crucial role in the maturation of oocytes and the production of eggs in oviparous animals. Vitellogenin receptor (VtgR) mediates the transport of Vtg explicitly to oocytes in the membrane. In a previous study, we found that miR-34 can regulate the expression of some eyestalk genes and affect reproduction in mud crab Scylla paramamosain, one of the most important economic crabs on the coasts of southern China.

Methods and results

In this study, firstly, we found that miR-34 can target at 3’-UTR of Vtg and VtgR genes by using bioinformatic tools and predicted miR-34 might depress the expression of Vtg and VtgR. Secondly, the relative luciferase activity of HEK293T cells co-transfected with miRNA mimic and pmir-RB-REPORTTM-Vtg/VtgR-3’UTR was significantly lower than those of cells co-transfected with mimic NC and pmir-RB-REPORTTM-Vtg/VtgR-3’UTR. Finally, in vivo experiments showed that agomiR-34 could repress the expression of Vtg and VtgR genes, while Antigomir-34 could promote the expression of these two genes.

Conclusions

These results confirm our hypothesis and previous published results that miR-34 may indirectly regulate ovarian development by binding to the 3’-UTR of Vtg and VtgR genes and inhibiting their expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Byrne BM, Gruber M, Ab G (1989) The evolution of egg yolk proteins. Prog Biophys Mol Biol 53:33–69. https://doi.org/10.1016/0079-6107(89)90005-9

    Article  CAS  PubMed  Google Scholar 

  2. Rosanova P, Romano M, Marciano R, Anteo C, Limatola E (2002) Vitellogenin precursors in the liver of the oviparous lizard, Podarcis sicula. Mol Reprod Dev 63:349–354. https://doi.org/10.1002/mrd.90019

    Article  CAS  PubMed  Google Scholar 

  3. Wallace RA (1985) Vitellogenesis and oocyte growth in nonmammalian vertebrates. Dev Biol (N Y 1985) 1:127–177. https://doi.org/10.1007/978-1-4615-6814-8_3

  4. Subramoniam T (2011) Mechanisms and control of vitellogenesis in crustaceans. Fish Sci 77:1–21. https://doi.org/10.1007/s12562-010-0301-z

    Article  CAS  Google Scholar 

  5. Soroka Y, Milner Y, Sagi A (2000) The hepatopancreas as a site of yolk protein synthesis in the prawn Macrobrachium rosenbergii. Invertebrate Reprod Dev 37:61–68. https://doi.org/10.1080/07924259.2000.9652400

    Article  CAS  Google Scholar 

  6. Li K, Chen L, Zhou Z, Li E, Zhao X, Guo H (2006) The site of vitellogenin synthesis in Chinese mitten-handed crab Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 143:453–458. https://doi.org/10.1016/j.cbpb.2005.12.019

    Article  CAS  PubMed  Google Scholar 

  7. Sun W, Li L, Li H, Zhou K, Li W, Wang Q (2020) Vitellogenin receptor expression in ovaries controls innate immunity in the Chinese mitten crab (Eriocheir sinensis) by regulating vitellogenin accumulation in the hemolymph. Fish Shellfish Immunol 107:480–489. https://doi.org/10.1016/j.fsi.2020.09.007

    Article  CAS  PubMed  Google Scholar 

  8. Thongda W, Chung JS, Tsutsui N, Zmora N, Katenta A (2015) Seasonal variations in reproductive activity of the blue crab, Callinectes sapidus: Vitellogenin expression and levels of vitellogenin in the hemolymph during ovarian development. Comp Biochem Physiol A Mol Integr Physiol 179:35–43. https://doi.org/10.1016/j.cbpa.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  9. Amano H, Fujita T, Hiramatsu N, Kagawa H, Matsubara T, Sullivan CV et al (2008) Multiple vitellogenin-derived yolk proteins in gray mullet (Mugil cephalus): disparate proteolytic patterns associated with ovarian follicle maturation. Mol Reprod Dev 75:1307–1317. https://doi.org/10.1002/mrd.20864

    Article  CAS  PubMed  Google Scholar 

  10. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44. https://doi.org/10.1038/nature01451

    Article  CAS  PubMed  Google Scholar 

  11. Kolarevic J, Nerland A, Nilsen F, Finn RN (2008) Goldsinny wrasse (Ctenolabrus rupestris) is an extreme vtgAa-type pelagophil teleost. Mol Reprod Dev 75:1011–1020. https://doi.org/10.1002/mrd.20845

    Article  CAS  PubMed  Google Scholar 

  12. Sawaguchi S, Ohkubo N, Koya Y, Matsubara T (2005) Incorporation and utilization of multiple forms of vitellogenin and their derivative yolk proteins during vitellogenesis and embryonic development in the mosquitofish, Gambusia affinis. Zoolog Sci 22:701–710. https://doi.org/10.2108/zsj.22.701

    Article  CAS  PubMed  Google Scholar 

  13. Wallace RA, Selman K (1990) Ultrastructural aspects of oogenesis and oocyte growth in fish and amphibians. J Electron Microsc Tech 16:175–201. https://doi.org/10.1002/jemt.1060160302

    Article  CAS  PubMed  Google Scholar 

  14. Williams VN, Reading BJ, Hiramatsu N, Amano H, Glassbrook N, Hara A et al (2014) Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: molecular characterization and processing during oocyte growth and maturation. Fish Physiol Biochem 40:395–415. https://doi.org/10.1007/s10695-013-9852-0

    Article  CAS  PubMed  Google Scholar 

  15. Schneider WJ (1996) Vitellogenin receptors: oocyte-specific members of the low-density lipoprotein receptor supergene family. Int Rev Cytol 166:103–37. https://doi.org/10.1016/s0074-7696(08)62507-3

  16. Schonbaum CP, Lee S, Mahowald AP (1995) The Drosophila yolkless gene encodes a vitellogenin receptor belonging to the low density lipoprotein receptor superfamily. Proc Natl Acad Sci U S A 92:1485–1489. https://doi.org/10.1073/pnas.92.5.1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Snigirevskaya ES, Sappington TW, Raikhel AS (1997) Internalization and recycling of vitellogenin receptor in the mosquito oocyte. Cell Tissue Res 290:175–183. https://doi.org/10.1007/s004410050919

    Article  CAS  PubMed  Google Scholar 

  18. Zera AJ (2006) Evolutionary genetics of juvenile hormone and ecdysteroid regulation in Gryllus: a case study in the microevolution of endocrine regulation. Comp Biochem Physiol A Mol Integr Physiol 144:365–379. https://doi.org/10.1016/j.cbpa.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  19. Li A, Sadasivam M, Ding JL (2003) Receptor-ligand interaction between vitellogenin receptor (VtgR) and vitellogenin (Vtg), implications on low density lipoprotein receptor and apolipoprotein B/E. The first three ligand-binding repeats of VtgR interact with the amino-terminal region of Vtg. J Biol Chem 278:2799–2806. https://doi.org/10.1074/jbc.M205067200

    Article  CAS  PubMed  Google Scholar 

  20. Ruan Y, Wong NK, Zhang X, Zhu C, Wu X, Ren C et al (2020) Vitellogenin Receptor (VgR) mediates oocyte maturation and ovarian development in the Pacific white shrimp (Litopenaeus vannamei). Front Physiol 11:485. https://doi.org/10.3389/fphys.2020.00485

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385. https://doi.org/10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  22. Donadeu FX, Schauer SN, Sontakke SD (2012) Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol 215:323–334. https://doi.org/10.1530/joe-12-0252

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Zhang X, Zhang X, Lu Y, Li L, Cui S (2017) MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. J Endocrinol 234:1–14. https://doi.org/10.1530/joe-16-0488

    Article  CAS  PubMed  Google Scholar 

  24. Azzam G, Smibert P, Lai EC, Liu JL (2012) Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Dev Biol 365:384–394. https://doi.org/10.1016/j.ydbio.2012.03.005

  25. König A, Shcherbata HR (2015) Soma influences GSC progeny differentiation via the cell adhesion-mediated steroid-let-7-Wingless signaling cascade that regulates chromatin dynamics. Biol Open 4:285–300. https://doi.org/10.1242/bio.201410553

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lucas KJ, Roy S, Ha J, Gervaise AL, Kokoza VA, Raikhel AS (2015) MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc Natl Acad Sci U S A 112:1440–1445. https://doi.org/10.1073/pnas.1424408112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song YN, Shi LL, Liu ZQ, Qiu GF (2014) Global analysis of the ovarian microRNA transcriptome: implication for miR-2 and miR-133 regulation of oocyte meiosis in the Chinese mitten crab, Eriocheir sinensis (Crustacea:Decapoda). BMC Genomics 15:547. https://doi.org/10.1186/1471-2164-15-547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hao J, Luo J, Chen Z, Ren Q, Guo J, Liu X et al (2017) MicroRNA-275 and its target Vitellogenin-2 are crucial in ovary development and blood digestion of Haemaphysalis longicornis. Parasit Vectors 10:253. https://doi.org/10.1186/s13071-017-2153-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malik MI, Nawaz M, Wang Y, Zhang H, Cao J, Zhou Y et al (2019) Localized expression and inhibition effect of miR-184 on blood digestion and oviposition in Haemaphysalis longicornis (Acari: Ixodidae). Parasit Vectors 12:500. https://doi.org/10.1186/s13071-019-3754-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Aksoy E, Girke T, Raikhel AS, Karginov FV (2017) Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Aedes aegypti. Proc Natl Acad Sci U S A 114:E1895–E1903. https://doi.org/10.1073/pnas.1701474114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Engkvist ME, Stratford EW, Lorenz S, Meza-Zepeda LA, Myklebost O, Munthe E (2017) Analysis of the miR-34 family functions in breast cancer reveals annotation error of miR-34b. Sci Rep 7:9655. https://doi.org/10.1038/s41598-017-10189-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358. https://doi.org/10.1016/s1534-5807(03)00227-2

    Article  CAS  PubMed  Google Scholar 

  33. Agostini M, Knight RA (2014) miR-34: from bench to bedside. Oncotarget 5:872–881. https://doi.org/10.18632/oncotarget.1825

    Article  PubMed  PubMed Central  Google Scholar 

  34. Otto T, Candido SV, Pilarz MS, Sicinska E, Bronson RT, Bowden M et al (2017) Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A 114:10660–10665. https://doi.org/10.1073/pnas.1702914114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao L, Guo W, Jiang F, He J, Liu H, Song J et al (2021) Phase-related differences in egg production of the migratory locust regulated by differential oosorption through microRNA-34 targeting activinβ. PLoS Genet 17:e1009174. https://doi.org/10.1371/journal.pgen.1009174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ye X, Xu L, Li X, He K, Hua H, Cao Z et al (2019) miR-34 modulates wing polyphenism in planthopper. PLoS Genet 15:e1008235. https://doi.org/10.1371/journal.pgen.1008235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Isik M, Blackwell TK, Berezikov E (2016) MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep 6:36766. https://doi.org/10.1038/srep36766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou M, Jia X, Wan H, Wang S, Zhang X, Zhang Z et al (2019) miR-34 regulates reproduction by inhibiting the expression of MIH, CHH, EcR, and FAMeT genes in mud crab Scylla paramamosain. Mol Reprod Dev 86:122–131. https://doi.org/10.1002/mrd.23063

    Article  CAS  PubMed  Google Scholar 

  39. Lin Z, Hao M, Zhu D, Li S, Wen X (2017) Molecular cloning, mRNA expression and nutritional regulation of a ∆6 fatty acyl desaturase-like gene of mud crab, Scylla paramamosain. Comp Biochem Physiol B Biochem Mol Biol 208–209:29–37. https://doi.org/10.1016/j.cbpb.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Sun B, Zhu F (2017) Epigallocatechin-3-gallate inhibit replication of white spot syndrome virus in Scylla paramamosain. Fish Shellfish Immunol 67:612–619. https://doi.org/10.1016/j.fsi.2017.06.050

    Article  CAS  PubMed  Google Scholar 

  41. Chen F, Wang K (2019) Characterization of the innate immunity in the mud crab Scylla paramamosain. Fish Shellfish Immunol 93:436–448. https://doi.org/10.1016/j.fsi.2019.07.076

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y (2010) Cloning and characterization of some oogenesis-related genes from Scylla paramamosain [Master]. Jimei University

  43. Zhou M, Jia X, Wan H, Wang S, Zhang X, Zhang Z et al (2020) miR-9 and miR-263 regulate the key genes of the ERK pathway in the ovary of mud crab Scylla paramamosain. Mar Biotechnol (NY) 22:594–606. https://doi.org/10.1007/s10126-020-09981-4

    Article  CAS  Google Scholar 

  44. Liu J, Zeng X, Han K, Jia X, Zhou M, Zhang Z et al (2021) The expression regulation of Cyclins and CDKs in ovary via miR-9c and miR-263a of Scylla paramamosain. Comp Biochem Physiol B Biochem Mol Biol 254:110567. https://doi.org/10.1016/j.cbpb.2021.110567

    Article  CAS  PubMed  Google Scholar 

  45. Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P et al (2010) Role of miR-34c microRNA in the late steps of spermatogenesis. RNA 16:720–731. https://doi.org/10.1261/rna.1963810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rokavec M, Li H, Jiang L, Hermeking H (2014) The p53/miR-34 axis in development and disease. J Mol Cell Biol 6:214–230. https://doi.org/10.1093/jmcb/mju003

    Article  CAS  PubMed  Google Scholar 

  47. Yuan S, Liu Y, Peng H, Tang C, Hennig GW, Wang Z et al (2019) Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc Natl Acad Sci U S A 116:3584–3593. https://doi.org/10.1073/pnas.1817018116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo W, Xie B, Xiong S, Liang X, Gui JF, Mei J (2017) miR-34a regulates sperm motility in zebrafish. Int J Mol Sci 18:2676. https://doi.org/10.3390/ijms18122676

  49. Liang M, Zhang Z, Jia X, Wang Y (2017) Function of miR-34c in process of mammalian reproductive development. J Fisheries Res. 39:419–428. https://doi.org/10.14012/j.cnki.fjsc.2017.06.001

    Article  Google Scholar 

  50. Mañanós EL, Núñez Rodríguez J, Le Menn F, Sanuy S, Carrillo M (1997) Identification of vitellogenin receptors in the ovary of a teleost fish, the Mediterranean sea bass (Dicentrarchus labrax). Reprod Nutr Dev 37:51–61. https://doi.org/10.1051/rnd:19970106

    Article  PubMed  Google Scholar 

  51. Schonbaum CP, Perrino JJ, Mahowald AP (2000) Regulation of the vitellogenin receptor during Drosophila melanogaster oogenesis. Mol Biol Cell. 11:511–521. https://doi.org/10.1091/mbc.11.2.511

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tufail M, Takeda M (2005) Molecular cloning, characterization and regulation of the cockroach vitellogenin receptor during oogenesis. Insect Mol Biol 14:389–401. https://doi.org/10.1111/j.1365-2583.2005.00570.x

    Article  CAS  PubMed  Google Scholar 

  53. Cohen A, Smith Y (2014) Estrogen regulation of microRNAs, target genes, and microRNA expression associated with vitellogenesis in the zebrafish. Zebrafish 11:462–478. https://doi.org/10.1089/zeb.2013.0873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu X, Li T, Chen J, Dong Y, Qiu J, Kang K et al (2015) Functional screen for microRNAs of Nilaparvata lugens reveals that targeting of glutamine synthase by miR-4868b regulates fecundity. J Insect Physiol 83:22–29. https://doi.org/10.1016/j.jinsphys.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  55. Chen E, Chen Z, Li S, Xing D, Guo H, Liu J et al (2020) bmo-miR-2739 and the novel microRNA miR-167 coordinately regulate the expression of the vitellogenin receptor in Bombyx mori oogenesis. Development 147:dev183723. https://doi.org/10.1242/dev.183723

Download references

Funding

This study was supported by grants from the National Key R&D Program of China (2018YFD0900205), the National Natural Science Foundation of China (41676161, 31672681), Special Funds Provided by the Ministry of Science and Technology of the People’s Republic of China to Guide the Development of Science and Technology in Fujian Province (No.2020L3011), the Natural Science Foundation of Fujian Province (2019J01691).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yinzhen Sheng, Jiaqian Liao, and Yuting Li. The first draft of the manuscript was written by Yinzhen Sheng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yilei Wang.

Ethics declarations

Conflict of interest

We declare that we have no competing interests.

Ethical approval

All of the study design and animal experiments were conducted in accordance with the guidelines of Jimei University’s Animal Care and Use Committee (No.2021-4).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Liao, J., Zhang, Z. et al. Regulation of vtg and VtgR in mud crab Scylla paramamosain by miR-34. Mol Biol Rep 49, 7367–7376 (2022). https://doi.org/10.1007/s11033-022-07530-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07530-x

Keywords

Navigation