Skip to main content
Log in

Fbxw17 is dispensable for viability and fertility in mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Skp1-Cullin-F-box (SCF) E3 ligase complex plays an important role in regulating spermatogenesis and fertility in mice. As a member of F-box proteins, the function of F-box and WD-40 domain protein 17 (Fbxw17) during spermatogenesis and fertility is unclear. In this study, we illustrate its function for spermatogenesis and fertility.

Methods and results

Here, we generated the Fbxw17 knockout (KO) mouse model by using the CRISPR/Cas9 system and analyzed the meiotic process and the fertility. Then, our results demonstrated that testis and sperm in the Fbxw17 KO mice had normal morphology. The testis weight, sperm count and fertility of Fbxw17 KO mice showed no significant difference compared with the wild-type mice. Subsequently, histological analysis of Fbxw17 KO mice revealed apparently normal germ cells of all stages and mature spermatozoa. Meanwhile, nuclear spread analysis showed that the synaptonemal complex formation and DSB repair proceeded normally in Fbxw17-deficient spermatocytes. Furthermore, we didn’t find defects in the meiotic prophase I spermatocytes and germ cells showed no apparent apoptosis in Fbxw17 KO mice.

Conclusions

Our results show that Fbxw17 is dispensable for fertility in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

We confirm that the data supporting the findings of this study are available within this article and its supplementary materials.

References

  1. Xie J, Jin Y, Wang G (2019) The role of SCF ubiquitin-ligase complex at the beginning of life. Reprod Biol Endocrinol 17:101

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M et al (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709

    Article  CAS  PubMed  Google Scholar 

  3. Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5:739–751

    Article  CAS  PubMed  Google Scholar 

  4. Zhou L, Yang Y, Zhang J, Guo X, Bi Y, Li X, Zhang P, Zhang J, Lin M, Zhou Z et al (2013) The role of RING box protein 1 in mouse oocyte meiotic maturation. PLoS ONE 8:e68964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guan Y, Leu NA, Ma J, Chmatal L, Ruthel G, Bloom JC, Lampson MA, Schimenti JC, Luo M, Wang PJ (2020) SKP1 drives the prophase I to metaphase I transition during male meiosis. Sci Adv 6:eaaz2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skaar JR, Pagan JK, Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14:369–381

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen KM, Busino L (2020) The biology of F-box proteins: the SCF family of E3 ubiquitin ligases. Adv Exp Med Biol 1217:111–122

    Article  CAS  PubMed  Google Scholar 

  8. Gopinathan L, Szmyd R, Low D, Diril MK, Chang HY, Coppola V, Liu K, Tessarollo L, Guccione E, van Pelt AMM, Kaldis P (2017) Emi2 is essential for mouse spermatogenesis. Cell Rep 20:697–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang W, Wang W, Xu Y, Shi J, Fu J, Chen B, Mu J, Zhang Z, Zhao L, Lin J et al (2021) FBXO43 variants in patients with female infertility characterized by early embryonic arrest. Hum Reprod 36:2392–2402

    Article  CAS  PubMed  Google Scholar 

  10. Wu H, Zhang X, Shen Q, Liu Y, Gao Y, Wang G, Lv M, Hua R, Xu Y, Zhou P et al (2022) A homozygous loss-of-function mutation in FBXO43 causes human non-obstructive azoospermia. Clin Genet 101:55–64

    Article  CAS  PubMed  Google Scholar 

  11. Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, Cui Y, Zhang X, Guo X, Li W, Liu M (2019) FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res 47:11755–11770

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Barbosa P, Zhaunova L, Debilio S, Steccanella V, Kelly V, Ly T, Ohkura H (2021) SCF-Fbxo42 promotes synaptonemal complex assembly by downregulating PP2A-B56. J Cell Biol 220:2

    Article  CAS  Google Scholar 

  13. Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M (2003) Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4:799–812

    Article  CAS  PubMed  Google Scholar 

  14. Kanatsu-Shinohara M, Onoyama I, Nakayama KI, Shinohara T (2014) Skp1-Cullin-F-box (SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal. Proc Natl Acad Sci USA 111:8826–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakagawa T, Zhang T, Kushi R, Nakano S, Endo T, Nakagawa M, Yanagihara N, Zarkower D, Nakayama K (2017) Regulation of mitosis-meiosis transition by the ubiquitin ligase beta-TrCP in male germ cells. Development 144:4137–4147

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Morohoshi A, Nakagawa T, Nakano S, Nagasawa Y, Nakayama K (2019) The ubiquitin ligase subunit beta-TrCP in Sertoli cells is essential for spermatogenesis in mice. Dev Biol 445:178–188

    Article  CAS  PubMed  Google Scholar 

  17. Kanarek N, Horwitz E, Mayan I, Leshets M, Cojocaru G, Davis M, Tsuberi BZ, Pikarsky E, Pagano M, Ben-Neriah Y (2010) Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCF{beta}-TrCP by single substrate depletion. Genes Dev 24:470–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo M, Yang F, Leu NA, Landaiche J, Handel MA, Benavente R, La Salle S, Wang PJ (2013) MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination. Nat Commun 4:2788

    Article  PubMed  CAS  Google Scholar 

  19. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW (2004) Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 18:2573–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong S, Wei J, Bowser RK, Chen BB, Mallampalli RK, Miao J, Ye Q, Tran KC, Zhao Y, Zhao J (2021) SCF FBXW17 E3 ubiquitin ligase regulates FBXL19 stability and cell migration. J Cell Biochem 122:326–334

    Article  CAS  PubMed  Google Scholar 

  21. Li T, He X, Luo L, Zeng H, Ren S, Chen Y (2021) F-box protein FBXW17-mediated proteasomal degradation of protein methyltransferase PRMT6 exaggerates CSE-induced lung epithelial inflammation and apoptosis. Front Cell Dev Biol 9:599020

    Article  PubMed  PubMed Central  Google Scholar 

  22. Luo M, Li Y, Guo H, Lin S, Chen J, Ma Q, Gu Y, Jiang Z, Gui Y (2015) Protein arginine methyltransferase 6 involved in germ cell viability during spermatogenesis and down-regulated by the androgen receptor. Int J Mol Sci 16:29467–29481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399–402

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  26. Yu G (2020) Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinformatics 69:e96

    Article  PubMed  Google Scholar 

  27. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ et al (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412–D419

    Article  CAS  PubMed  Google Scholar 

  28. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203

    Article  CAS  PubMed  Google Scholar 

  29. Peters AH, Plug AW, van Vugt MJ, de Boer P (1997) A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res 5:66–68

    Article  CAS  PubMed  Google Scholar 

  30. Thompson LL, Rutherford KA, Lepage CC, McManus KJ (2021) The SCF complex is essential to maintain genome and chromosome stability. Int J Mol Sci 22:8544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang HB, Chen FL, Dong HL, Xie MY, Zhang H, Chen Y, Liu H, Bai XC, Li XM, Chen ZG (2020) Loss of Fbxw7 in sertoli cells impairs testis development and causes infertility in mice. Biol Reprod 102:963–974

    Article  PubMed  Google Scholar 

  32. Gershoni M, Hauser R, Barda S, Lehavi O, Arama E, Pietrokovski S, Kleiman SE (2019) A new MEIOB mutation is a recurrent cause for azoospermia and testicular meiotic arrest. Hum Reprod 34:666–671

    Article  CAS  PubMed  Google Scholar 

  33. Li M, Huang T, Li MJ, Zhang CX, Yu XC, Yin YY, Liu C, Wang X, Feng HW, Zhang T et al (2019) The histone modification reader ZCWPW1 is required for meiosis prophase I in male but not in female mice. Sci Adv 5:eaxx1101

    Article  CAS  Google Scholar 

  34. Gomez HL, Felipe-Medina N, Sanchez-Martin M, Davies OR, Ramos I, Garcia-Tunon I, de Rooij DG, Dereli I, Toth A, Barbero JL et al (2016) C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat Commun 7:13298

    Article  CAS  Google Scholar 

  35. Fan S, Jiao Y, Khan R, Jiang X, Javed AR, Ali A, Zhang H, Zhou J, Naeem M, Murtaza G et al (2021) Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans. Am J Hum Genet 108:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyata H, Castaneda JM, Fujihara Y, Yu Z, Archambeault DR, Isotani A, Kiyozumi D, Kriseman ML, Mashiko D, Matsumura T et al (2016) Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice. Proc Natl Acad Sci USA 113:7704–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu Y, Oura S, Matsumura T, Oji A, Sakurai N, Fujihara Y, Shimada K, Miyata H, Tobita T, Noda T et al (2019) CRISPR/Cas9-mediated genome editing reveals 30 testis-enriched genes dispensable for male fertility in micedagger. Biol Reprod 101:501–511

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S (2003) Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23:2699–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khan M, Jabeen N, Khan T, Hussain HMJ, Ali A, Khan R, Jiang L, Li T, Tao Q, Zhang X et al (2018) The evolutionarily conserved genes: Tex37, Ccdc73, Prss55 and Nxt2 are dispensable for fertility in mice. Sci Rep 8:4975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pasek RC, Malarkey E, Berbari NF, Sharma N, Kesterson RA, Tres LL, Kierszenbaum AL, Yoder BK (2016) Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse. Dev Biol 412:208–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Z, Liu P, Inuzuka H, Wei W (2014) Roles of F-box proteins in cancer. Nat Rev Cancer 14:233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X (2020) Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 49:100673

    Article  PubMed  Google Scholar 

  43. Fon Tacer K, Montoya MC, Oatley MJ, Lord T, Oatley JM, Klein J, Ravichandran R, Tillman H, Kim M, Connelly JP et al (2019) MAGE cancer-testis antigens protect the mammalian germline under environmental stress. Sci Adv 5:eaav4832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for prof. Xiaodong Zhang and Qinghua Shi for the kindly gift of the pUC57-KAN-T7-sgRNA and pST374-Cas9-ZF-NLS vectors.

Funding

This work was supported by National Key Research & Development Program of China (Grand No. 2018YFC1003400), National Natural Science Foundation of China (Grand No. 31771588) and the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine (Grand No. FIRMC200509) to Mengcheng Luo.

Author information

Authors and Affiliations

Authors

Contributions

ZC performed most of the experiments and wrote the manuscript. DM, TJ and ZY helped in some of the experiments. JL, QS, ZL, ZD and YL participated in data analysis. ML, RL and YL revised the manuscript.

Corresponding authors

Correspondence to Zhen Chen or Mengcheng Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests in this article.

Ethical approval

C57BL/6 and ICR background mice were maintained on a pathogen-free animal facility and used for experimentation by following the animal protocols approved by the Institutional Animal Care and Use Committee of Wuhan University.

Inclusion of identifiable human data

No potentially identifiable human images or data are presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 206 KB)

Supplementary file2 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Ma, D., Jin, T. et al. Fbxw17 is dispensable for viability and fertility in mice. Mol Biol Rep 49, 7287–7295 (2022). https://doi.org/10.1007/s11033-022-07512-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07512-z

Keywords

Navigation