Skip to main content

Advertisement

Log in

Nrf2 antioxidant pathway and apoptosis induction and inhibition of NF-κB-mediated inflammatory response in human prostate cancer PC3 cells by Brassica oleracea var. acephala: An in vitro study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Brassica oleracea var. acephala is a good source of health-promoting biologically active compounds like phenolics, vitamins, and glucosinolates.

Methods and results

This in vitro research was conducted to evaluate the apoptotic, antioxidant, anti-inflammatory, and antiproliferative properties of ethanolic extract of Brassica oleracea var. acephala (EEBO) in PC3 prostate cancer cells. The LC–MS/MS technique was applied to identify the biomolecules of EEBO. The MTT assay was used to evaluate the cytotoxic effects of EEBO on PC3 cells. Moreover, qRT-PCR was used to examine the expression levels of Nrf2, NQO1, HO-1, NF-κB, TNF-α, IL-6, BAX, and BCL-2 in PC3 cell line. MMP was predicted by Rhodamine 123 staining, and release of cytochrome c was detected by an ELISA kit. Further, apoptosis was quantified by DNA fragmentation assay. The Western blotting method was used to detect the protein expression levels, and The DPPH assay was applied to determine the antioxidant effect of EEBO. The formula and structure of 19 biomolecules were predicted by LC–MS/MS. EEBO exhibited scavenging activity for DPPH. The MTT test showed EEBO reduced the viability of PC3 cells. The mRNA and protein levels of NRF2 pathway genes and BAX were increased, but those of the NF-κB pathway genes and BCL-2 were decreased in the EEBO-treated cells. Moreover, EEBO led to the diminution of MMP and enhanced the release of cytochrome c and DNA fragmentation, which resulted in apoptosis.

Conclusions

Molecular changes due to the anticancer impact of EEBO on PC3 were involved in the induction of Nrf2 antioxidant pathway and apoptosis and inhibition of inflammation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of current study are available from the corresponding author, upon reasonable request.

References

  1. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A (2020) Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol 77(1):38–52

    Article  PubMed  Google Scholar 

  2. Zhou S, Hawley JR, Soares F, Grillo G, Teng M, Tonekaboni SAM et al (2020) Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nature commun 11(1):1–13

    CAS  Google Scholar 

  3. Ferraldeschi R, Pezaro C, Karavasilis V, De Bono J (2013) Abiraterone and novel antiandrogens: overcoming castration resistance in prostate cancer. Annu Rev Med 64:1–13

    Article  CAS  PubMed  Google Scholar 

  4. Yedjou CG, Mbemi AT, Noubissi F, Tchounwou SS, Tsabang N, Payton M et al (2019) Prostate cancer disparity, chemoprevention, and treatment by specific medicinal plants. Nutrients 11(2):336

    Article  CAS  PubMed Central  Google Scholar 

  5. Bellezza I, Scarpelli P, Pizzo SV, Grottelli S, Costanzi E, Minelli A (2017) ROS-independent Nrf2 activation in prostate cancer. Oncotarget 8(40):67506

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tu W, Wang H, Li S, Liu Q, Sha H (2019) The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis 10(3):637

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xue D, Zhou C, Shi Y, Lu H, Xu R, He X (2016) Nuclear transcription factor Nrf2 suppresses prostate cancer cells growth and migration through upregulating ferroportin. Oncotarget 7(48):78804

    Article  PubMed  PubMed Central  Google Scholar 

  8. Milkovic L, Zarkovic N, Saso L (2017) Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox biol 12:727–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang R, Song C, Chen J, Zhou L, Jiang X, Cao X et al (2020) Limonin ameliorates acetaminophen-induced hepatotoxicity by activating Nrf2 antioxidative pathway and inhibiting NF-κB inflammatory response via upregulating Sirt1. Phytomedicine 69:153211

    Article  CAS  PubMed  Google Scholar 

  10. Bellezza I, Grottelli S, Gatticchi L, Mierla AL, Minelli A (2014) α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene 539(1):1–7

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Pung D, Su Z-Y, Guo Y, Zhang C, Yang AY et al (2016) Epigenetics reactivation of Nrf2 in prostate TRAMP C1 cells by curcumin analogue FN1. Chem Res Toxicol 29(4):694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Han G, Liu Q, Zhang W, Wang J (2018) Silencing of PYGB suppresses growth and promotes the apoptosis of prostate cancer cells via the NF-κB/Nrf2 signaling pathway. Mol Med Rep 18(4):3800–8

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaikh IA, Brown I, Schofield AC, Wahle KW, Heys SD (2008) Docosahexaenoic acid enhances the efficacy of docetaxel in prostate cancer cells by modulation of apoptosis: the role of genes associated with the NF-κB pathway. Prostate 68(15):1635–1646

    Article  CAS  PubMed  Google Scholar 

  14. Torrealba N, Rodríguez-Berriguete G, Fraile B, Olmedilla G, Martínez-Onsurbe P, Guil-Cid M et al (2017) Expression of several cytokines in prostate cancer: correlation with clinical variables of patients. Relationship with biochemical progression of the malignance. Cytokine 89:105–115

    Article  CAS  PubMed  Google Scholar 

  15. Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059

    Article  CAS  PubMed  Google Scholar 

  16. Šamec D, Urlić B, Salopek-Sondi B (2019) Kale (Brassica oleracea var. acephala) as a superfood: review of the scientific evidence behind the statement. Crit Rev Food Sci Nutr 59(15):2411–22

    Article  PubMed  CAS  Google Scholar 

  17. Lemos M, Santin JR, Júnior LCK, Niero R, de Andrade SF (2011) Gastroprotective activity of hydroalcoholic extract obtained from the leaves of Brassica oleracea var acephala DC in different animal models. J Ethnopharmacol 138(2):503–7

    Article  PubMed  Google Scholar 

  18. Gonçalves ÁLM, Lemos M, Niero R, de Andrade SF, Maistro EL (2012) Evaluation of the genotoxic and antigenotoxic potential of Brassica oleracea L. var. acephala DC in different cells of mice. J Ethnopharmacol 143(2):740–5

    Article  PubMed  CAS  Google Scholar 

  19. Radošević K, Srček VG, Bubalo MC, Rimac Brnčić S, Takács K, Redovniković IR (2017) Assessment of glucosinolates, antioxidative and antiproliferative activity of broccoli and collard extracts. J Food Compos Anal 61:59–66

    Article  CAS  Google Scholar 

  20. Liu B, Mao Q, Cao M, Xie L (2012) Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol 19(2):134–141

    Article  PubMed  Google Scholar 

  21. Han B, Li X, Yu T (2014) Cruciferous vegetables consumption and the risk of ovarian cancer: a meta-analysis of observational studies. Diagn pathol 9(1):1–7

    Article  Google Scholar 

  22. Russo M, Spagnuolo C, Russo GL, Skalicka-Woźniak K, Daglia M, Sobarzo-Sánchez E et al (2018) Nrf2 targeting by sulforaphane: a potential therapy for cancer treatment. Crit Rev Food Sci Nutr 58(8):1391–405

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Yao X-D, Li W, Geng J, Yan Y, Che J-P et al (2015) Nrf2 sensitizes prostate cancer cells to radiation via decreasing basal ROS levels. BioFactors 41(1):52–57

    Article  PubMed  CAS  Google Scholar 

  24. Chintong S, Phatvej W, Rerk-Am U, Waiprib Y, Klaypradit W (2019) In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants 8(5):128

    Article  CAS  PubMed Central  Google Scholar 

  25. Mostafavi-Pour Z, Ramezani F, Keshavarzi F, Samadi N (2017) The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells. Oncol Lett 13(3):1965–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin L, Qin Y, Jin T, Liu S, Zhang S, Shen X, Lin Z (2014) Significance of NQO1 overexpression for prognostic evaluation of gastric adenocarcinoma. Exp Mol Pathol 96(2):200–205

    Article  CAS  PubMed  Google Scholar 

  27. Samatiwat P, Prawan A, Senggunprai L, Kukongviriyapan V (2015) Repression of Nrf2 enhances antitumor effect of 5-fluorouracil and gemcitabine on cholangiocarcinoma cells. Naunyn Schmiedebergs Arch Pharmacol 388(6):601–612

    Article  CAS  PubMed  Google Scholar 

  28. Varghese JE, Shanmugam V, Rengarajan RL, Meyyazhagan A, Arumugam VA, Al-Misned FA, El-Serehy HA (2020) Role of vitamin D3 on apoptosis and inflammatory-associated gene in colorectal cancer: an in vitro approach. J King Saud Univ Sci 32(6):2786–2789

    Article  Google Scholar 

  29. Gao F, Zhang S (2019) Salicin inhibits AGE-induced degradation of type II collagen and aggrecan in human SW1353 chondrocytes: therapeutic potential in osteoarthritis. Artif cells nanomed biotechnol 47(1):1043–1049

    Article  CAS  PubMed  Google Scholar 

  30. Yoon CH, Chung SJ, Lee SW, Park YB, Lee SK, Park MC (2013) Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine 80(3):274–279

    Article  CAS  PubMed  Google Scholar 

  31. Khazaei M, Pazhouhi M, Khazaei S (2018) Evaluation of hydro-alcoholic extract of Trifolium pratens L. for its anti-cancer potential on U87MG cell line. Cell J 20(3):412

    PubMed  PubMed Central  Google Scholar 

  32. Ranjbari A, Heidarian E, Ghatreh-Samani K (2017) Effects of thymoquinone on IL-6 Gene expression and some cellular signaling pathways in prostate cancer PC3 cells. Jundishapur J Nat Pharm Prod. https://doi.org/10.5812/jjnpp.63753

    Article  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  34. Kim U, Kim C-Y, Lee JM, Oh H, Ryu B, Kim J et al (2020) Phloretin inhibits the human prostate cancer cells through the generation of reactive oxygen species. Pathol Oncol Res 26(2):977–984

    Article  CAS  PubMed  Google Scholar 

  35. Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25(22):5474

    Article  CAS  PubMed Central  Google Scholar 

  36. Chaudhary A, Sharma U, Vig AP, Singh B, Arora S (2014) Free radical scavenging, antiproliferative activities and profiling of variations in the level of phytochemicals in different parts of broccoli (Brassica oleracea italica). Food Chem 148:373–80

    Article  CAS  PubMed  Google Scholar 

  37. Gawlik-Dziki U, Jeżyna M, Świeca M, Dziki D, Baraniak B, Czyż J (2012) Effect of bioaccessibility of phenolic compounds on in vitro anticancer activity of broccoli sprouts. Food Res Int 49(1):469–476

    Article  CAS  Google Scholar 

  38. Abdulah R, Faried A, Kobayashi K, Yamazaki C, Suradji EW, Ito K et al (2009) Selenium enrichment of broccoli sprout extract increases chemosensitivity and apoptosis of LNCaP prostate cancer cells. BMC Cancer 9(1):1–12

    Article  CAS  Google Scholar 

  39. Kestwal RM, Lin JC, Bagal-Kestwal D, Chiang BH (2011) Glucosinolates fortification of cruciferous sprouts by sulphur supplementation during cultivation to enhance anti-cancer activity. Food Chem 126(3):1164–1171

    Article  CAS  Google Scholar 

  40. Le TN, Luong HQ, Li HP, Chiu CH, Hsieh PC (2019) Broccoli (Brassica oleracea L. var. italica) sprouts as the potential food source for bioactive properties: A comprehensive study on in vitro disease models. Foods 8(11):532

    Article  CAS  PubMed Central  Google Scholar 

  41. Le TN, Chiu CH, Hsieh PC (2020) Bioactive compounds and bioactivities of brassica oleracea l. var. italica sprouts and microgreens: an updated overview from a nutraceutical perspective. Plants 9(8):946

    Article  CAS  PubMed Central  Google Scholar 

  42. Walters DG, Young PJ, Agus C, Knize MG, Boobis AR, Gooderham NJ, Lake BG (2004) Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) in humans. Carcinogenesis 25(9):1659–1669

    Article  CAS  PubMed  Google Scholar 

  43. Hafidh RR, Abdulamir AS, Bakar FA, Jalilian FA, Jahanshiri F, Abas F, Sekawi Z (2013) Novel anticancer activity and anticancer mechanisms of Brassica oleracea L. var. capitata f. rubra. E J Integr Med 5(5):450–64

    Article  Google Scholar 

  44. Major N, Prekalj B, Perković J, Ban D, Užila Z, Ban SG (2020) The effect of different extraction protocols on brassica oleracea var. acephala antioxidant activity, bioactive compounds, and sugar profile. Plants 9(12):1792

    Article  CAS  PubMed Central  Google Scholar 

  45. Aydin S (2020) Total phenolic content, antioxidant, antibacterial and antifungal activities, FT-IR analyses of Brassica oleracea L. var. acephala and Ornithogalum umbellatum L. Genetika 52(1):229–44

    Article  Google Scholar 

  46. Bhatt S, Singh B, Gupta M (2020) Antioxidant and prebiotic potential of Murraya koenigii and Brassica oleracea var. botrytis leaves as food ingredient. J Agric Food Res 2:100069

    Article  Google Scholar 

  47. Yang R, Hui Q, Gu Z, Zhou Y, Guo L, Shen C et al (2016) Effects of CaCl2 on the metabolism of glucosinolates and the formation of isothiocyanates as well as the antioxidant capacity of broccoli sprouts. J Funct Foods 24:156–63

    Article  CAS  Google Scholar 

  48. Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. Int J Mol Sci 18(11):2330

    Article  PubMed Central  CAS  Google Scholar 

  49. Baenas N, Moreno DA, García-Viguera C (2012) Selecting sprouts of Brassicaceae for optimum phytochemical composition. J Agric Food Chem 60(45):11409–20

    Article  CAS  PubMed  Google Scholar 

  50. Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, Lohse M et al (2012) UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol 53(9):1546–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lelario F, Bianco G, Bufo SA, Cataldi TR (2012) Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC–ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Phytochemistry 73:74–83

    Article  CAS  PubMed  Google Scholar 

  52. Mas S, Crescenti A, Gassó P, Deulofeu R, Molina R, Ballesta A, Kensler TW, Lafuente A (2007) Induction of apoptosis in HT-29 cells by extracts from isothiocyanates-rich varieties of Brassica oleracea. Nutri Cancer 58(1):107–14

    Article  CAS  Google Scholar 

  53. Yang DK (2018) Cabbage (Brassica oleracea var. capitata) protects against H2O2-induced oxidative stress by preventing mitochondrial dysfunction in H9c2 cardiomyoblasts. Evid Based Complement Altern Med. https://doi.org/10.1155/2018/2179021

    Article  Google Scholar 

  54. Subedi L, Cho K, Park YU, Choi HJ, Kim SY (2019) Sulforaphane-enriched broccoli sprouts pretreated by pulsed electric fields reduces neuroinflammation and ameliorates scopolamine-induced amnesia in mouse brain through its antioxidant ability via Nrf2-HO-1 activation. Oxid Med Cell Longev 2019:3549274. https://doi.org/10.1155/2019/3549274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhäuser C (2001) Nuclear factor κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276(34):32008–32015

    Article  CAS  PubMed  Google Scholar 

  56. Abouzed TK, Beltagy EE, Kahilo KA, Ibrahim WM (2021) Molecular changes associated with the anticancer effect of sulforaphane against Ehrlich solid tumour in mice. J Biochem Mol Toxicol 35(2):e22655

    Article  CAS  PubMed  Google Scholar 

  57. Johnson GS, Li J, Beaver LM, Dashwood WM, Sun D, Rajendran P et al (2017) A functional pseudogene, NMRAL2P, is regulated by Nrf2 and serves as a coactivator of NQO1 in sulforaphane-treated colon cancer cells. Mol Nutr food Res 61(4):1600769

    Article  CAS  Google Scholar 

  58. Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen J-G et al (2012) Keap1–nrf2 signaling: a target for cancer prevention by sulforaphane. In: Pezzuto JM, Suh N (eds) Natural products in cancer prevention and therapy. Springer, Berlin, pp 163–77

    Chapter  Google Scholar 

  59. Jaganathan R, Ravinayagam V, Panchanadham S, Palanivelu S (2013) Potential therapeutic role of Tridham in human hepatocellular carcinoma cell line through induction of p53 independent apoptosis. BMC Complement altern med 13(1):1–14

    Article  Google Scholar 

  60. Babaei MA, Huri HZ, Kamalidehghan B, Yeap SK, Ahmadipour F (2017) Apoptotic induction and inhibition of NF-κB signaling pathway in human prostatic cancer PC3 cells by natural compound 2, 2′-oxybis (4-allyl-1-methoxybenzene), biseugenol B, from Litsea costalis: an in vitro study. Onco Targets Ther 10:277

    Article  CAS  Google Scholar 

  61. Salah-Abbès JB, Belgacem H, Ezzdini K, Abdel-Wahhab MA, Abbès S (2020) Zearalenone nephrotoxicity: DNA fragmentation, apoptotic gene expression and oxidative stress protected by Lactobacillus plantarum MON03. Toxicon 175:28–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Funding

This original paper was based on the results of a research project and supported by a Grant (No. 980073) from Kermanshah University of Medical Sciences, Kermanshah, Iran. Author Houshang Nemati has received research support from Kermanshah University of Medical Sciences.”

Author information

Authors and Affiliations

Authors

Contributions

MN and HN: performed this experiment and designed the study. HN: wrote the main manuscript. MN: collected the data and analyzed the results. MN and MK: reviewed the data and prepared the pictures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Houshang Nemati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this paper.

Ethical approval

The research protocol was approved by the ethics committee of Kermanshah university of medical sciences on January 30, 2019 (Reference Number: 1397.875).

Informed consent

Informed consent was obtained all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazeri, M., Nemati, H. & Khazaei, M. Nrf2 antioxidant pathway and apoptosis induction and inhibition of NF-κB-mediated inflammatory response in human prostate cancer PC3 cells by Brassica oleracea var. acephala: An in vitro study. Mol Biol Rep 49, 7251–7261 (2022). https://doi.org/10.1007/s11033-022-07507-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07507-w

Keywords

Navigation