Skip to main content

Advertisement

Log in

Comparative transcriptome analysis of leaf, stem, and root tissues of Semiliquidambar cathayensis reveals candidate genes involved in terpenoid biosynthesis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Semiliquidambar cathayensis is a traditional medicinal plant and endemic species in China. Its roots, branches, leaves, bark, and nectar are known to have therapeutic effects against rheumatoid arthritis, lumbar muscle strain, and several other diseases. However, limited knowledge regarding the molecular properties of S. cathayensis highlights the need for further research in order to elucidate the underlying pathways governing the synthesis of its active ingredients and regulation of its accumulation processes.

Methods

We conducted transcriptome sequencing of the leaf, stem and root epidermises, and stem and root xylems of S. cathayensis with three biological replicates. Moreover, candidate genes involved in terpenoid biosynthesis, such as IDI, FPPS, DXR, SQS, GPPS, and HMGR were selected for quantitative real-time PCR analysis.

Results

We identified 88,582 unigenes. Among which, 36,144 unigenes were annotated to the nr protein database, 21,981 to the Gene Ontology database, 11,565 to the Clusters of Orthologous Groups database, 24,209 to the Pfam database, 21,685 to the SWISS-PROT database, and 12,753 to the Kyoto Encyclopedia of Genes and Genomes (KEGG), with 5072 unigenes common to all six databases. Of those annotated using the KEGG database, 187 unigenes were related to the terpenoid metabolism pathway, and expression analysis of the related genes indicated that the mevalonate and methylerythritol 4-phosphate pathways play different roles in terpenoid biosynthesis in different tissues of S. cathayensis.

Conclusions

These findings greatly expand gene resources of S. cathayensis and provide basic data for the study of the biosynthetic pathways and molecular mechanisms of terpenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding author. The RNA-seq Illumina paired-end reads of the transcriptome for this study have been submitted to NCBI BioProject PRJNA761214.

References

  1. Tian XM, Yan LH, Jiang L et al (2021) Chemical comparison of different tissues of Semiliquidambar cathayensis Chang by UHPLC-QTOF/MS–based metabonomics. Plant Physiol J 57:1311–1318. https://doi.org/10.13592/j.cnki.ppj.2020.0558

    Article  CAS  Google Scholar 

  2. Yang WL, Yao ZS, Luo XQ et al (1999) Analgesic and anti-inflammatory effects of the ethanol extracts of Jinlu Ban Fenghe (Semiliquidambar cathayensis) root. Jiangxi Sci 17:176–179

  3. Yang L, Liu RH, He JW (2019) Rapid analysis of the chemical compositions in Semiliquidambar cathayensis roots by ultra high-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry. Molecules. https://doi.org/10.3390/molecules24224098

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lu HX, Wu ZL, Liang WJ, Chen ML, Huang BB, Wei QQ (2015) Chemical constituents from Semiliquidambar cathayensis Roots. Zhong Yao Cai 38:2543–2546

    CAS  PubMed  Google Scholar 

  5. Zhou GX, Yang YC, Shi JG, Yang WL(2002) Studies on chemical constituents from Semiliquidambar cathayensis. Chin Trad Herb Drugs 07:16–18

  6. Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L (2021) BHLH iridoid SYNTHESIS 3 is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Direct 5:e00305. https://doi.org/10.1002/pld3.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cherukupalli N, Divate M, Mittapelli SR, Khareedu VR, Vudem DR (2016) De novo assembly of leaf transcriptome in the medicinal plant Andrographis paniculata. Front Plant Sci 7:1203. https://doi.org/10.3389/fpls.2016.01203

    Article  PubMed  PubMed Central  Google Scholar 

  8. Balusamy SRD, Rahimi S, Cho YG, Senthil K, Yang DC (2017) Overexpression of geraniol 10-hydroxylase from panax ginseng conferred enhanced resistance to Pseudomonas syringae in Arabidopsis. Plant Growth Regul 81:305–316

    Article  CAS  Google Scholar 

  9. Fang X, Li CY, Yang Y, Cui MY, Chen XY, Yang L (2017) Identification of a novel (-)-5-Epieremophilene synthase from Salvia miltiorrhiza via transcriptome mining. Front Plant Sci 8:627. https://doi.org/10.3389/fpls.2017.00627

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karpaga Raja Sundari B, Budhwar R, Dwarakanath BS, Thyagarajan SP (2020) De novo transcriptome analysis unravels tissue-specific expression of candidate genes involved in major secondary metabolite biosynthetic pathways of Plumbago zeylanica: implication for pharmacological potential. 3 Biotech 10:271. https://doi.org/10.1007/s13205-020-02263-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu Y, Tian S, Li R, Huang X, Li F, Ge F et al (2021) Transcriptome characterization and identification of molecular markers (SNP, SSR, and indels) in the medicinal plant Sarcandra glabra spp. BioMed Res Int 2021:9990910. https://doi.org/10.1155/2021/9990910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin CF, Li ZQ, Li Y, Wang S, Li L, Liu M et al (2020) Transcriptome analysis of terpenoid biosynthetic genes and simple sequence repeat marker screening in Eucommia ulmoides. Mol Biol Rep 47:1979–1990. https://doi.org/10.1007/s11033-020-05294-w

    Article  CAS  PubMed  Google Scholar 

  13. Shi XD, Gu YX, Dai J et al (2018) Analysis of secondary metabolism pathway genes based on Magnolia officinalis transcriptome. Lishizhen Med Mater Med Res 29:247–250

    Google Scholar 

  14. Yang JRNA. Seq for DEG analysis About triterpenoid saponin synthesis and transcript profiling of Ardisia crenata Sims. Master’s Degree Sichuan Agric Univ Sichuan Prov China. 2015.

  15. Cheng J, Lyu Zh, Wang C, Chen J, Lin T (2019) De novo analysis of Heortia Vitessoides (Lepidoptera: Crambidae) transcriptome and identification of putative cytochrome P450 monooxygenase genes. J Entomol Sci 54:293–315. https://doi.org/10.18474/JES18-103

    Article  Google Scholar 

  16. Liu YL, Geng YP, Song ML, Zhang P, Hou J, Wang W (2019) Genetic structure and diversity of Glycyrrhiza populations based on transcriptome SSR markers. Plant Mol Biol Report 37:401–412. https://doi.org/10.1007/s11105-019-01165-2

    Article  CAS  Google Scholar 

  17. Guan LL, Xia QF, Shi XB et al (2016) Cloning and analysis of geranyl pyrophosphate synthase (GPPS) sequence of Blumea balsamifera L. DC on transcriptome information. Chin J Trop Crops 37:901–9

    Google Scholar 

  18. Singh S, Pal S, Shanker K, Chanotiya CS, Gupta MM, Dwivedi UN et al (2014) Sterol partitioning by HMGR and DXR for routing intermediates toward with anolide biosynthesis. Physiol Plant 152:617–633. https://doi.org/10.1111/ppl.12213

    Article  CAS  PubMed  Google Scholar 

  19. Manzano D, Fernández-Busquets X, Schaller H, González V, Boronat A, Arró M et al (2004) The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity. Planta 219:982–992. https://doi.org/10.1007/s00425-004-1301-y

    Article  CAS  PubMed  Google Scholar 

  20. Yang WZ, Cao J, Wu Y, Kong F, Li L (2021) Review on plant terpenoid emissions worldwide and in China. Sci Total Environ 787:147454. https://doi.org/10.1016/j.scitotenv.2021.147454

    Article  CAS  PubMed  Google Scholar 

  21. Zhou C, Guan YD (2017) The molecular basis of superficial scald development related to ethylene perception and alpha-farnesene metabolism in “wujiuxiang” pear. Hortic Amst 216:76–82

    Article  CAS  Google Scholar 

  22. Su HL (2017) Study on molecular structure, biochemical characterization and expression of squalene synthase from Siraitia grosvenorii. Doct. Degree Guangxi Med. Univ. Guangxi Prov, China

    Google Scholar 

  23. Rong Q, Jiang D, Chen Y, Shen Y, Yuan Q, Lin H et al (2016) Molecular cloning and functional analysis of squalene synthase 2(SQS2) in Salvia miltiorrhiza Bunge. Front Plant Sci 7:1274. https://doi.org/10.3389/fpls.2016.01274

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li HH, Liu XY, Wang W et al (2014) Cloning and sequence analysis of squalene synthase gene in Eriobotrya japonica L. Chin J Trop Crops 35:1090–1094

    Google Scholar 

  25. Kim TD, Han JY, Huh GH, Choi YE (2011) Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in panax ginseng. Plant Cell Physiol 52:125–137. https://doi.org/10.1093/pcp/pcq179

    Article  CAS  PubMed  Google Scholar 

  26. Guirimand G, Guihur A, Phillips MA, Oudin A, Glévarec G, Melin C et al (2012) A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Mol Biol 79:443–459. https://doi.org/10.1007/s11103-012-9923-0

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XN, Guan HY, Dai ZB, Guo J, Shen Y, Cui G et al (2015) Functional analysis of the isopentenyl diphosphate isomerase of Salvia miltiorrhiza via color complementation and RNA interference. Molecules 20:20206–20218. https://doi.org/10.3390/molecules201119689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang DY, Wen H, Wang W et al (2017) Transcriptional analysis of terpenoid biosynthesis in Aconitum Carmichaelii. Chin J Exp Trad Med Formulae 23:45–50

    Google Scholar 

  29. Bouvier F, Suire C, d’Harlingue A, Backhaus RA, Camara B (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J 24:241–252. https://doi.org/10.1046/j.1365-313x.2000.00875.x

    Article  CAS  PubMed  Google Scholar 

  30. Oikawa E, Ishibashi Y (1999) Activity of geranyl pyrophosphate synthase in musty odor producing cyanobacteria. Water Sci Technol 40(6):195–202. https://doi.org/10.1016/S0273-1223(99)00557-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chunyan Pei for her assistance with our experiments.

Funding

This research was funded by Hunan Forestry Science and Technology Innovation Plan Project, Grant no XLK202106-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Tian or Jia Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Yan, L., Jiang, L. et al. Comparative transcriptome analysis of leaf, stem, and root tissues of Semiliquidambar cathayensis reveals candidate genes involved in terpenoid biosynthesis. Mol Biol Rep 49, 5585–5593 (2022). https://doi.org/10.1007/s11033-022-07492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07492-0

Keywords

Navigation