Abstract
Kelch-like protein 3 (KLHL3) is a substrate adaptor of Cullin3-RING ubiquitin ligase (CRL3), and KLHL3-CUL3 complex plays a vital role in the ubiquitination of specific substrates. Mutations and abnormal post-translational modifications of KLHL3-CUL3 affect substrate ubiquitination and may related to the pathogenesis of Gordon syndrome (GS), Primary Hyperparathyroidism (PHPT), Diabetes Mellitus (DM), Congenital Heart Disease (CHD), Pre-eclampsia (PE) and even cancers. Therefore, it is essential to understand the function and molecular mechanisms of KLHL3-CUL3 for the treatment of related diseases. In this review, we summary the structure and function of KLHL3-CUL3, the effect of KLHL3-CUL3 mutations and aberrant modifications in GS, PHPT, DM, CHD and PE. Moreover, we noted a possible role of KLHL3-CUL3 in carcinogenesis and provided ideas for targeting KLHL3-CUL3 for related disease treatment.


Similar content being viewed by others
Availability of data and materials
Not applicable.
References
Wang R, Wang G (2019) Protein Modification and Autophagy Activation. Adv Exp Med Biol 1206:237–259. https://doi.org/10.1007/978-981-15-0602-4_12
Faktor J et al (2019) Protein Ubiquitination Research in Oncology. Klin Onkol. 32(Supplementum 3. 56–64. https://doi.org/10.14735/amko20193S
Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19(1):59–70. https://doi.org/10.1038/nrm.2017.83
Nakamura N (2018) Ubiquitin System. Int J Mol Sci 19. https://doi.org/10.3390/ijms19041080
Toma-Fukai S, Shimizu T (2021) Structural Diversity of Ubiquitin E3 Ligase. Molecules 26(21). https://doi.org/10.3390/molecules26216682
Duffy MJ et al (2022) Targeting p53 for the treatment of cancer. Semin Cancer Biol 79:58–67. https://doi.org/10.1016/j.semcancer.2020.07.005
Konopleva M et al (2020) MDM2 inhibition: an important step forward in cancer therapy. Leukemia 34(11):2858–2874. https://doi.org/10.1038/s41375-020-0949-z
Wang P, Song J, Ye D (2020) CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases. Adv Exp Med Biol 1217:211–223. https://doi.org/10.1007/978-981-15-1025-0_13
Dhanoa BS et al (2013) Update on the Kelch-like (KLHL) gene family. Hum Genomics 7(1):13. https://doi.org/10.1186/1479-7364-7-13
Mitsuishi Y, Motohashi H, Yamamoto M (2012) The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2:200. https://doi.org/10.3389/fonc.2012.00200
Takahashi D et al (2013) KLHL2 interacts with and ubiquitinates WNK kinases. Biochem Biophys Res Commun 437(3):457–462. https://doi.org/10.1016/j.bbrc.2013.06.104
Ishizawa K et al (2019) Calcineurin dephosphorylates Kelch-like 3, reversing phosphorylation by angiotensin II and regulating renal electrolyte handling. Proc Natl Acad Sci U S A 116(8):3155–3160. https://doi.org/10.1073/pnas.1817281116
Xiang S et al (2021) Targeting Cul3-scaffold E3 ligase complex via KLHL substrate adaptors for cancer therapy. Pharmacol Res 169:105616. https://doi.org/10.1016/j.phrs.2021.105616
Ji AX, Privé GG (2013) Crystal structure of KLHL3 in complex with Cullin3. PloS one 8(4):e. https://doi.org/10.1371/journal.pone.0060445
Boyden LM et al (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482(7383):98–102. https://doi.org/10.1038/nature10814
Anderica-Romero AC et al (2014) Insights in cullin 3/WNK4 and its relationship to blood pressure regulation and electrolyte homeostasis. Cell Signal 26(6):1166–1172. https://doi.org/10.1016/j.cellsig.2014.01.032
Zhang H et al (2021) LZTR1: A promising adaptor of the CUL3 family. Oncol Lett 22(1):564. https://doi.org/10.3892/ol.2021.12825
Wang L et al (2019) Unveiling the Distinct Mechanisms by which Disease-Causing Mutations in the Kelch Domain of KLHL3 Disrupt the Interaction with the Acidic Motif of WNK4 through Molecular Dynamics Simulation. Biochemistry 58(16):2105–2115. https://doi.org/10.1021/acs.biochem.9b00066
Wimuttisuk W, Singer JD (2007) The Cullin3 ubiquitin ligase functions as a Nedd8-bound heterodimer. Mol Biol Cell 18(3):899–909. https://doi.org/10.1091/mbc.e06-06-0542
Rennie ML, Chaugule VK, Walden H (2020) Modes of allosteric regulation of the ubiquitination machinery. Curr Opin Struct Biology 62:189–196. https://doi.org/10.1016/j.sbi.2020.02.003
Furusho T, Uchida S, Sohara E (2020) The WNK signaling pathway and salt-sensitive hypertension. Hypertens research: official J Japanese Soc Hypertens 43(8):733–743. https://doi.org/10.1038/s41440-020-0437-x
Schumacher FR et al (2015) Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med 7(10):1285–1306. https://doi.org/10.15252/emmm.201505444
Murthy M, Kurz T, O’Shaughnessy KM (2016) ROMK expression remains unaltered in a mouse model of familial hyperkalemic hypertension caused by the CUL3Delta403-459 mutation. Physiol Rep 4. https://doi.org/10.14814/phy2.12850
Fischer S et al (2020) Loss-of-function Mutations of CUL3, a High Confidence Gene for Psychiatric Disorders, Lead to Aberrant Neurodevelopment In Human Induced Pluripotent Stem Cells. Neuroscience. 448: p. 234–254.https://doi.org/10.1016/j.neuroscience.2020.08.028
Zhang Y, Jiang G, Zhang C (2021) Downregulation of Cullin 3 Ligase Signaling Pathways Contributes to Hypertension in Preeclampsia. Front Cardiovasc Med 8:654254. https://doi.org/10.3389/fcvm.2021.654254
Cornelius RJ, Yang CL, Ellison DH (2020) Hypertension-causing cullin 3 mutations disrupt COP9 signalosome binding. Am J Physiol Renal Physiol 318(1):F204. https://doi.org/10.1152/ajprenal.00497.2019
Lingaraju GM et al (2014) Crystal structure of the human COP9 signalosome. Nature 512(7513):161–165. https://doi.org/10.1038/nature13566
Louis-Dit-Picard H et al (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44(4) 456 – 60. https://doi.org/10.1038/ng.2218
Ohta A et al (2013) The CUL3-KLHL3 E3 ligase complex mutated in Gordon’s hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 451(1):111–122. https://doi.org/10.1042/BJ20121903
Shi X et al (2019) Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res 148:104404. https://doi.org/10.1016/j.phrs.2019.104404
Yoshizaki Y et al (2015) Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3. Biochem Biophys Res Commun 467(2):229–234. https://doi.org/10.1016/j.bbrc.2015.09.184
Shibata S et al (2014) Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc Natl Acad Sci U S A 111(43):15556–15561. https://doi.org/10.1073/pnas.1418342111
Chávez-Canales M et al (2013) Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens 31(2):303–311. https://doi.org/10.1097/HJH.0b013e32835bbb83
Park JS et al (2017) Three cases of Gordon syndrome with dominant KLHL3 mutations. J Pediatr Endocrinol Metab 30(3):361–364. https://doi.org/10.1515/jpem-2016-0309
Mori Y et al (2015) Involvement of selective autophagy mediated by p62/SQSTM1 in KLHL3-dependent WNK4 degradation. Biochem J 472(1):33–41. https://doi.org/10.1042/BJ20150500
Mabillard H, Sayer JA (2019) The Molecular Genetics of Gordon Syndrome. Genes (Basel) 10(12). https://doi.org/10.3390/genes10120986
Raina R et al (2019) Overview of Monogenic or Mendelian Forms of Hypertension. Front Pediatr 7:263. https://doi.org/10.3389/fped.2019.00263
Naqvi S et al (2021) A cross-talk between gut microbiome, salt and hypertension. Biomed Pharmacother 134:111156. https://doi.org/10.1016/j.biopha.2020.111156
Valenzuela PL et al (2021) Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 18(4):251–275. https://doi.org/10.1038/s41569-020-00437-9
Paver WK, Pauline GJ, HYPERTENSION AND HYPERPOTASSAEMIA WITHOUT RENAL DISEASE IN A YOUNG MALE (1964). Med J Aust. 2: p. 305-6.https://doi.org/10.5694/j.1326-5377.1964.tb115766.x
Uchida S et al (2014) Regulation of with-no-lysine kinase signaling by Kelch-like proteins. Biol Cell 106(2):45–56. https://doi.org/10.1111/boc.201300069
O’Shaughnessy KM (2015) Gordon Syndrome: a continuing story. Pediatr Nephrol 30(11). https://doi.org/10.1007/s00467-014-2956-7
Glover M et al (2014) Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon’s syndrome). Clin Sci (Lond) 126(10):721–726. https://doi.org/10.1042/CS20130326
Gong Y et al (2015) KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8. Proc Natl Acad Sci U S A 112(14):4340–4345. https://doi.org/10.1073/pnas.1421441112
Thomson MN et al (2019) WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Am J Physiology-Renal Physiol 318(1):F216. https://doi.org/10.1152/ajprenal.00232.2019
Matsumoto G et al (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44(2):279–289. https://doi.org/10.1016/j.molcel.2011.07.039
Ishizawa K et al (2019) Inhibition of Sodium Glucose Cotransporter 2 Attenuates the Dysregulation of Kelch-Like 3 and NaCl Cotransporter in Obese Diabetic Mice. J Am Soc Nephrol 30(5):782–794. https://doi.org/10.1681/ASN.2018070703
Fuladi S et al (2020) Computational Modeling of Claudin Structure and Function. Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21030742
Hureaux M et al (2021) The variety of genetic defects explains the phenotypic heterogeneity of Familial Hyperkalemic Hypertension. Kidney Int Rep 6(10):2639–2652. https://doi.org/10.1016/j.ekir.2021.07.025
Anderegg MA et al (2021) The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4-NCC dependent pathway in the kidney. Kidney Int 99(2):350–363. https://doi.org/10.1016/j.kint.2020.08.023
Bazúa-Valenti S et al (2018) The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. J Am Soc Nephrol 29(7):1838–1848. https://doi.org/10.1681/asn.2017111155
Mayan H et al (2015) Hypercalciuria in familial hyperkalemia and hypertension with KLHL3 mutations. Nephron 130(1):59–65. https://doi.org/10.1159/000381563
Gong Y, Hou J (2017) Claudins in barrier and transport function-the kidney. Pflugers Arch 469(1):105–113. https://doi.org/10.1007/s00424-016-1906-6
Cornelius RJ et al (2018) Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. Am J Physiol Renal Physiol 315(4). https://doi.org/10.1152/ajprenal.00602.2017
Cornelius RJ et al (2018) Renal COP9 Signalosome Deficiency Alters CUL3-KLHL3-WNK Signaling Pathway. J Am Soc Nephrol 29(11):2627–2640. https://doi.org/10.1681/ASN.2018030333
Chatrathi HE et al (2022) Novel CUL3 Variant Causing Familial Hyperkalemic Hypertension Impairs Regulation and Function of Ubiquitin Ligase Activity. Hypertension 79(1):60–75. https://doi.org/10.1161/HYPERTENSIONAHA.121.17624
Moreno E et al (2019) Structure-function relationships in the renal NaCl cotransporter (NCC). Curr Top Membr. 83: p. 177–204.https://doi.org/10.1016/bs.ctm.2019.01.003
Walker MD, Silverberg SJ (2018) Primary hyperparathyroidism. Nat Rev Endocrinol 14(2):115–125. https://doi.org/10.1038/nrendo.2017.104
Insogna KL (2018) Primary Hyperparathyroidism. N Engl J Med 379(11):1050–1059. https://doi.org/10.1056/NEJMcp1714213
Masi L (2019) Primary Hyperparathyroidism. Front Horm Res 51:1–12. https://doi.org/10.1159/000491034
Cusano NE, Cipriani C, Bilezikian JP (2018) Management of normocalcemic primary hyperparathyroidism. Best Pract Res Clin Endocrinol Metab 32(6):837–845. https://doi.org/10.1016/j.beem.2018.09.009
Liu Y et al (2021) Differences in Clinicopathological Characteristics of Papillary Thyroid Carcinoma between Symptomatic and Asymptomatic Patients with Primary Hyperparathyroidism. Int J Endocrinol. 2021: p. 9917694.https://doi.org/10.1155/2021/9917694
Li Y, Simonds WF (2016) Endocrine neoplasms in familial syndromes of hyperparathyroidism. Endocrine-related Cancer 23(6). https://doi.org/10.1530/ERC-16-0059. p. R229-R247.
Conigrave AD, Ward DT (2013) Calcium-sensing receptor (CaSR): Pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 27(3):315–331. https://doi.org/10.1016/j.beem.2013.05.010
Chavez-Abiega S et al (2020) Sensing Extracellular Calcium - An Insight into the Structure and Function of the Calcium-Sensing Receptor (CaSR). Adv Exp Med Biol 1131:1031–1063. https://doi.org/10.1007/978-3-030-12457-1_41
Belge H et al (2007) Renal expression of parvalbumin is critical for NaCl handling and response to diuretics. Proc Natl Acad Sci U S A 104(37):14849–14854. https://doi.org/10.1073/pnas.0702810104
Reilly RF, Peixoto AJ, Desir GV (2010) The Evidence-Based Use of Thiazide Diuretics in Hypertension and Nephrolithiasis. Clin J Am Soc Nephrol 5(10):1893. https://doi.org/10.2215/CJN.04670510
Khan SR et al (2016) Kidney stones. Nat Rev Dis Primers 16008. 2https://doi.org/10.1038/nrdp.2016.8
Wang Z et al (2018) Status of Hypertension in China. Circulation 137(22):2344–2356. https://doi.org/10.1161/CIRCULATIONAHA.117.032380
Lu J et al (2017) Prevalence, awareness, treatment, and control of hypertension in China: data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project). The Lancet 390(10112):2549–2558. https://doi.org/10.1016/S0140-6736(17)32478-9
Pepe J et al (2017) Cardiovascular manifestations of primary hyperparathyroidism: a narrative review. Eur J Endocrinol 177(6):R297. https://doi.org/10.1530/EJE-17-0485
Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377–390. https://doi.org/10.1038/s41581-020-0278-5
Cho NH et al (2018) IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023
Pippitt K, Li M, Gurgle HE (2016) Diabetes Mellitus: Screening and Diagnosis. Am Fam Physician 93(2):103–109
Ning G et al (2009) Progress in diabetes research in China. J Diabetes 1(3):163–172. https://doi.org/10.1111/j.1753-0407.2009.00037.x
Fayfman M, Pasquel FJ, Umpierrez GE (2017) Management of Hyperglycemic Crises: Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State. Med Clin North Am 101(3):587–606. https://doi.org/10.1016/j.mcna.2016.12.011
Guo Q et al (2021) Decreased KLHL3 expression is involved in the activation of WNK-OSR1/SPAK-NCC cascade in type 1 diabetic mice. Pflugers Arch 473(2):185–196. https://doi.org/10.1007/s00424-020-02509-8
Yang Q, Vijayakumar A, Kahn BB (2018) Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol 19(10):654–672. https://doi.org/10.1038/s41580-018-0044-8
Li W, Huang E, Gao S (2017) Type 1 Diabetes Mellitus and Cognitive Impairments: A Systematic Review. J Alzheimers Dis 57(1):29–36. https://doi.org/10.3233/JAD-161250
Katsarou A et al (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3:17016. https://doi.org/10.1038/nrdp.2017.16
Zhang Y et al (2021) Dysfunction of Cullin 3 RING E3 ubiquitin ligase causes vasoconstriction and increased sodium reabsorption in diabetes. Arch Biochem Biophys 710:109000. https://doi.org/10.1016/j.abb.2021.109000
Dai L et al (2011) Birth defects surveillance in China. World J Pediatr 7(4):302–310. https://doi.org/10.1007/s12519-011-0326-0
Zhao L et al (2020) Birth prevalence of congenital heart disease in China, 1980–2019: a systematic review and meta-analysis of 617 studies. Eur J Epidemiol 35(7):631–642. https://doi.org/10.1007/s10654-020-00653-0
Liu Y et al (2019) Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 48(2):455–463. https://doi.org/10.1093/ije/dyz009
Kuster DWD et al (2019) Altered C10 domain in cardiac myosin binding protein-C results in hypertrophic cardiomyopathy. Cardiovasc Res 115(14):1986–1997. https://doi.org/10.1093/cvr/cvz111
Wang L et al (2017) cMyBP-C was decreased via KLHL3-mediated proteasomal degradation in congenital heart diseases. Exp Cell Res 355(1):18–25. https://doi.org/10.1016/j.yexcr.2017.03.025
Sahin-Uysal N et al (2020) Maternal and cord blood homocysteine, vitamin B12, folate, and B-type natriuretic peptide levels at term for predicting congenital heart disease of the neonate: A case-control study. J Matern Fetal Neonatal Med 33(15):2649–2656. https://doi.org/10.1080/14767058.2019.1633300
San Juan-Reyes S et al (2020) Oxidative stress in pregnancy complicated by preeclampsia. Arch Biochem Biophys 681:108255. https://doi.org/10.1016/j.abb.2020.108255
Poon LC et al (2019) The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet 145(Suppl 1):1–33. https://doi.org/10.1002/ijgo.12802
Helmo FR et al (2018) Angiogenic and antiangiogenic factors in preeclampsia. Pathol Res Pract 214(1):7–14. https://doi.org/10.1016/j.prp.2017.10.021
Fang S, Sigmund CD (2020) PPARγ and RhoBTB1 in hypertension. Curr Opin Nephrol Hypertens 29(2):161–170. https://doi.org/10.1097/mnh.0000000000000579
Pelham CJ et al (2012) Cullin-3 regulates vascular smooth muscle function and arterial blood pressure via PPARγ and RhoA/Rho-kinase. Cell Metab 16(4):462–472. https://doi.org/10.1016/j.cmet.2012.08.011
Meor Azlan NF, Koeners MP, Zhang J (2021) Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension. Acta Pharm Sin B 11(5):1117–1128. https://doi.org/10.1016/j.apsb.2020.09.009
Ko B et al (2010) RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter. Am J Physiol Renal Physiol 299(2):F300. https://doi.org/10.1152/ajprenal.00441.2009
Jin X et al (2020) CRL3-SPOP ubiquitin ligase complex suppresses the growth of diffuse large B-cell lymphoma by negatively regulating the MyD88/NF-kappaB signaling. Leukemia 34(5):1305–1314. https://doi.org/10.1038/s41375-019-0661-z
Romero R et al (2020) Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. Nat Cancer 1(6):589–602. https://doi.org/10.1038/s43018-020-0071-1
Bedard PL et al (2020) Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395(10229):1078–1088. https://doi.org/10.1016/s0140-6736(20)30164-1
Lin CM et al (2019) Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain. FASEB J 33(1):1051–1061. https://doi.org/10.1096/fj.201801023R
Wang L, Peng JB (2017) Phosphorylation of KLHL3 at serine 433 impairs its interaction with the acidic motif of WNK4: a molecular dynamics study. Protein Sci 26(2):163–173. https://doi.org/10.1002/pro.3063
Kliuk-Ben Bassat O et al (2017) Familial Hyperkalemia and Hypertension (FHHt) and KLHL3: Description of a Family with a New Recessive Mutation (S553L) Compared to a Family with a Dominant Mutation, Q309R, with Analysis of Urinary Sodium Chloride Cotransporter. Nephron 137(1):77–84. https://doi.org/10.1159/000475825
Doan D et al (2020) Novel KLHL3 Variant in an Infant With Gordon Syndrome. Clin Pediatr (Phila) 59(11):1011–1013. https://doi.org/10.1177/0009922820920938
Anglani F et al (2021) Genotype-phenotype correlation in Gordon’s syndrome: report of two cases carrying novel heterozygous mutations. J Nephrol. https://doi.org/10.1007/s40620-021-01083-1
Ostrosky-Frid M et al (2020) Familial Hyperkalemic Hypertension Genotype With a Negative Phenotype: A CUL3 Mosaicism. Am J Hypertens 33(3):278–281. https://doi.org/10.1093/ajh/hpz185
Shao L et al (2018) A novel mutation in exon 9 of Cullin 3 gene contributes to aberrant splicing in pseudohypoaldosteronism type II. FEBS Open Bio 8(3):461–469. https://doi.org/10.1002/2211-5463.12389
Nakano K et al (2020) Familial cases of pseudohypoaldosteronism type II harboring a novel mutation in the Cullin 3 gene. Nephrol (Carlton) 25(11):818–821. https://doi.org/10.1111/nep.13752
Yavas Abali Z et al (2020) Rare cause of severe hypertension in an adolescent boy presenting with short stature: Answers. Pediatr Nephrol 35(3):405–407. https://doi.org/10.1007/s00467-019-04352-1
Acknowledgements
We would like to thank Dr. Yuqi Wang (West Lake University, China) for the kind help and good advice provided.
Funding
This work was supported by The Natural Science Foundation of Ningbo (grant no. 2021J065), and The K.C. Wong Magna Fund of Ningbo University.
Author information
Authors and Affiliations
Contributions
YL and QL drafted the manuscript. XJ, QL and YL made substantial contributions to the interpretation, drafting the study and revising it critically for important intellectual content. XJ, and YL were major contributors in the manuscript. All authors read and approved the fnal manuscript. Data authentication is not applicable.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Patient consent for publication
Not applicable.
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lin, Y., Li, Q. & Jin, X. Kelch-like protein 3 in human disease and therapy. Mol Biol Rep 49, 9813–9824 (2022). https://doi.org/10.1007/s11033-022-07487-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-022-07487-x

