Skip to main content

Advertisement

Log in

Kelch-like protein 3 in human disease and therapy

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Kelch-like protein 3 (KLHL3) is a substrate adaptor of Cullin3-RING ubiquitin ligase (CRL3), and KLHL3-CUL3 complex plays a vital role in the ubiquitination of specific substrates. Mutations and abnormal post-translational modifications of KLHL3-CUL3 affect substrate ubiquitination and may related to the pathogenesis of Gordon syndrome (GS), Primary Hyperparathyroidism (PHPT), Diabetes Mellitus (DM), Congenital Heart Disease (CHD), Pre-eclampsia (PE) and even cancers. Therefore, it is essential to understand the function and molecular mechanisms of KLHL3-CUL3 for the treatment of related diseases. In this review, we summary the structure and function of KLHL3-CUL3, the effect of KLHL3-CUL3 mutations and aberrant modifications in GS, PHPT, DM, CHD and PE. Moreover, we noted a possible role of KLHL3-CUL3 in carcinogenesis and provided ideas for targeting KLHL3-CUL3 for related disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Wang R, Wang G (2019) Protein Modification and Autophagy Activation. Adv Exp Med Biol 1206:237–259. https://doi.org/10.1007/978-981-15-0602-4_12

    Article  CAS  PubMed  Google Scholar 

  2. Faktor J et al (2019) Protein Ubiquitination Research in Oncology. Klin Onkol. 32(Supplementum 3. 56–64. https://doi.org/10.14735/amko20193S

  3. Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19(1):59–70. https://doi.org/10.1038/nrm.2017.83

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura N (2018) Ubiquitin System. Int J Mol Sci 19. https://doi.org/10.3390/ijms19041080

  5. Toma-Fukai S, Shimizu T (2021) Structural Diversity of Ubiquitin E3 Ligase. Molecules 26(21). https://doi.org/10.3390/molecules26216682

  6. Duffy MJ et al (2022) Targeting p53 for the treatment of cancer. Semin Cancer Biol 79:58–67. https://doi.org/10.1016/j.semcancer.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  7. Konopleva M et al (2020) MDM2 inhibition: an important step forward in cancer therapy. Leukemia 34(11):2858–2874. https://doi.org/10.1038/s41375-020-0949-z

    Article  PubMed  Google Scholar 

  8. Wang P, Song J, Ye D (2020) CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases. Adv Exp Med Biol 1217:211–223. https://doi.org/10.1007/978-981-15-1025-0_13

    Article  CAS  PubMed  Google Scholar 

  9. Dhanoa BS et al (2013) Update on the Kelch-like (KLHL) gene family. Hum Genomics 7(1):13. https://doi.org/10.1186/1479-7364-7-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitsuishi Y, Motohashi H, Yamamoto M (2012) The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2:200. https://doi.org/10.3389/fonc.2012.00200

    Article  PubMed  PubMed Central  Google Scholar 

  11. Takahashi D et al (2013) KLHL2 interacts with and ubiquitinates WNK kinases. Biochem Biophys Res Commun 437(3):457–462. https://doi.org/10.1016/j.bbrc.2013.06.104

    Article  CAS  PubMed  Google Scholar 

  12. Ishizawa K et al (2019) Calcineurin dephosphorylates Kelch-like 3, reversing phosphorylation by angiotensin II and regulating renal electrolyte handling. Proc Natl Acad Sci U S A 116(8):3155–3160. https://doi.org/10.1073/pnas.1817281116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiang S et al (2021) Targeting Cul3-scaffold E3 ligase complex via KLHL substrate adaptors for cancer therapy. Pharmacol Res 169:105616. https://doi.org/10.1016/j.phrs.2021.105616

    Article  CAS  PubMed  Google Scholar 

  14. Ji AX, Privé GG (2013) Crystal structure of KLHL3 in complex with Cullin3. PloS one 8(4):e. https://doi.org/10.1371/journal.pone.0060445

    Article  CAS  Google Scholar 

  15. Boyden LM et al (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482(7383):98–102. https://doi.org/10.1038/nature10814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderica-Romero AC et al (2014) Insights in cullin 3/WNK4 and its relationship to blood pressure regulation and electrolyte homeostasis. Cell Signal 26(6):1166–1172. https://doi.org/10.1016/j.cellsig.2014.01.032

    Article  CAS  Google Scholar 

  17. Zhang H et al (2021) LZTR1: A promising adaptor of the CUL3 family. Oncol Lett 22(1):564. https://doi.org/10.3892/ol.2021.12825

    Article  CAS  Google Scholar 

  18. Wang L et al (2019) Unveiling the Distinct Mechanisms by which Disease-Causing Mutations in the Kelch Domain of KLHL3 Disrupt the Interaction with the Acidic Motif of WNK4 through Molecular Dynamics Simulation. Biochemistry 58(16):2105–2115. https://doi.org/10.1021/acs.biochem.9b00066

    Article  CAS  PubMed  Google Scholar 

  19. Wimuttisuk W, Singer JD (2007) The Cullin3 ubiquitin ligase functions as a Nedd8-bound heterodimer. Mol Biol Cell 18(3):899–909. https://doi.org/10.1091/mbc.e06-06-0542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rennie ML, Chaugule VK, Walden H (2020) Modes of allosteric regulation of the ubiquitination machinery. Curr Opin Struct Biology 62:189–196. https://doi.org/10.1016/j.sbi.2020.02.003

    Article  CAS  Google Scholar 

  21. Furusho T, Uchida S, Sohara E (2020) The WNK signaling pathway and salt-sensitive hypertension. Hypertens research: official J Japanese Soc Hypertens 43(8):733–743. https://doi.org/10.1038/s41440-020-0437-x

    Article  CAS  Google Scholar 

  22. Schumacher FR et al (2015) Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med 7(10):1285–1306. https://doi.org/10.15252/emmm.201505444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murthy M, Kurz T, O’Shaughnessy KM (2016) ROMK expression remains unaltered in a mouse model of familial hyperkalemic hypertension caused by the CUL3Delta403-459 mutation. Physiol Rep 4. https://doi.org/10.14814/phy2.12850

  24. Fischer S et al (2020) Loss-of-function Mutations of CUL3, a High Confidence Gene for Psychiatric Disorders, Lead to Aberrant Neurodevelopment In Human Induced Pluripotent Stem Cells. Neuroscience. 448: p. 234–254.https://doi.org/10.1016/j.neuroscience.2020.08.028

  25. Zhang Y, Jiang G, Zhang C (2021) Downregulation of Cullin 3 Ligase Signaling Pathways Contributes to Hypertension in Preeclampsia. Front Cardiovasc Med 8:654254. https://doi.org/10.3389/fcvm.2021.654254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cornelius RJ, Yang CL, Ellison DH (2020) Hypertension-causing cullin 3 mutations disrupt COP9 signalosome binding. Am J Physiol Renal Physiol 318(1):F204. https://doi.org/10.1152/ajprenal.00497.2019

    Article  CAS  PubMed  Google Scholar 

  27. Lingaraju GM et al (2014) Crystal structure of the human COP9 signalosome. Nature 512(7513):161–165. https://doi.org/10.1038/nature13566

    Article  CAS  PubMed  Google Scholar 

  28. Louis-Dit-Picard H et al (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44(4) 456 – 60. https://doi.org/10.1038/ng.2218

  29. Ohta A et al (2013) The CUL3-KLHL3 E3 ligase complex mutated in Gordon’s hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 451(1):111–122. https://doi.org/10.1042/BJ20121903

    Article  CAS  PubMed  Google Scholar 

  30. Shi X et al (2019) Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res 148:104404. https://doi.org/10.1016/j.phrs.2019.104404

    Article  CAS  PubMed  Google Scholar 

  31. Yoshizaki Y et al (2015) Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3. Biochem Biophys Res Commun 467(2):229–234. https://doi.org/10.1016/j.bbrc.2015.09.184

    Article  CAS  PubMed  Google Scholar 

  32. Shibata S et al (2014) Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc Natl Acad Sci U S A 111(43):15556–15561. https://doi.org/10.1073/pnas.1418342111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chávez-Canales M et al (2013) Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens 31(2):303–311. https://doi.org/10.1097/HJH.0b013e32835bbb83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park JS et al (2017) Three cases of Gordon syndrome with dominant KLHL3 mutations. J Pediatr Endocrinol Metab 30(3):361–364. https://doi.org/10.1515/jpem-2016-0309

    Article  CAS  PubMed  Google Scholar 

  35. Mori Y et al (2015) Involvement of selective autophagy mediated by p62/SQSTM1 in KLHL3-dependent WNK4 degradation. Biochem J 472(1):33–41. https://doi.org/10.1042/BJ20150500

    Article  CAS  PubMed  Google Scholar 

  36. Mabillard H, Sayer JA (2019) The Molecular Genetics of Gordon Syndrome. Genes (Basel) 10(12). https://doi.org/10.3390/genes10120986

  37. Raina R et al (2019) Overview of Monogenic or Mendelian Forms of Hypertension. Front Pediatr 7:263. https://doi.org/10.3389/fped.2019.00263

    Article  PubMed  PubMed Central  Google Scholar 

  38. Naqvi S et al (2021) A cross-talk between gut microbiome, salt and hypertension. Biomed Pharmacother 134:111156. https://doi.org/10.1016/j.biopha.2020.111156

    Article  CAS  PubMed  Google Scholar 

  39. Valenzuela PL et al (2021) Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 18(4):251–275. https://doi.org/10.1038/s41569-020-00437-9

    Article  CAS  PubMed  Google Scholar 

  40. Paver WK, Pauline GJ, HYPERTENSION AND HYPERPOTASSAEMIA WITHOUT RENAL DISEASE IN A YOUNG MALE (1964). Med J Aust. 2: p. 305-6.https://doi.org/10.5694/j.1326-5377.1964.tb115766.x

  41. Uchida S et al (2014) Regulation of with-no-lysine kinase signaling by Kelch-like proteins. Biol Cell 106(2):45–56. https://doi.org/10.1111/boc.201300069

    Article  CAS  PubMed  Google Scholar 

  42. O’Shaughnessy KM (2015) Gordon Syndrome: a continuing story. Pediatr Nephrol 30(11). https://doi.org/10.1007/s00467-014-2956-7

  43. Glover M et al (2014) Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon’s syndrome). Clin Sci (Lond) 126(10):721–726. https://doi.org/10.1042/CS20130326

    Article  CAS  Google Scholar 

  44. Gong Y et al (2015) KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8. Proc Natl Acad Sci U S A 112(14):4340–4345. https://doi.org/10.1073/pnas.1421441112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomson MN et al (2019) WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Am J Physiology-Renal Physiol 318(1):F216. https://doi.org/10.1152/ajprenal.00232.2019

    Article  CAS  Google Scholar 

  46. Matsumoto G et al (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44(2):279–289. https://doi.org/10.1016/j.molcel.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  47. Ishizawa K et al (2019) Inhibition of Sodium Glucose Cotransporter 2 Attenuates the Dysregulation of Kelch-Like 3 and NaCl Cotransporter in Obese Diabetic Mice. J Am Soc Nephrol 30(5):782–794. https://doi.org/10.1681/ASN.2018070703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fuladi S et al (2020) Computational Modeling of Claudin Structure and Function. Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21030742

  49. Hureaux M et al (2021) The variety of genetic defects explains the phenotypic heterogeneity of Familial Hyperkalemic Hypertension. Kidney Int Rep 6(10):2639–2652. https://doi.org/10.1016/j.ekir.2021.07.025

    Article  PubMed  PubMed Central  Google Scholar 

  50. Anderegg MA et al (2021) The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4-NCC dependent pathway in the kidney. Kidney Int 99(2):350–363. https://doi.org/10.1016/j.kint.2020.08.023

    Article  CAS  PubMed  Google Scholar 

  51. Bazúa-Valenti S et al (2018) The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. J Am Soc Nephrol 29(7):1838–1848. https://doi.org/10.1681/asn.2017111155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mayan H et al (2015) Hypercalciuria in familial hyperkalemia and hypertension with KLHL3 mutations. Nephron 130(1):59–65. https://doi.org/10.1159/000381563

    Article  CAS  PubMed  Google Scholar 

  53. Gong Y, Hou J (2017) Claudins in barrier and transport function-the kidney. Pflugers Arch 469(1):105–113. https://doi.org/10.1007/s00424-016-1906-6

    Article  CAS  PubMed  Google Scholar 

  54. Cornelius RJ et al (2018) Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. Am J Physiol Renal Physiol 315(4). https://doi.org/10.1152/ajprenal.00602.2017

  55. Cornelius RJ et al (2018) Renal COP9 Signalosome Deficiency Alters CUL3-KLHL3-WNK Signaling Pathway. J Am Soc Nephrol 29(11):2627–2640. https://doi.org/10.1681/ASN.2018030333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chatrathi HE et al (2022) Novel CUL3 Variant Causing Familial Hyperkalemic Hypertension Impairs Regulation and Function of Ubiquitin Ligase Activity. Hypertension 79(1):60–75. https://doi.org/10.1161/HYPERTENSIONAHA.121.17624

    Article  CAS  PubMed  Google Scholar 

  57. Moreno E et al (2019) Structure-function relationships in the renal NaCl cotransporter (NCC). Curr Top Membr. 83: p. 177–204.https://doi.org/10.1016/bs.ctm.2019.01.003

  58. Walker MD, Silverberg SJ (2018) Primary hyperparathyroidism. Nat Rev Endocrinol 14(2):115–125. https://doi.org/10.1038/nrendo.2017.104

    Article  CAS  PubMed  Google Scholar 

  59. Insogna KL (2018) Primary Hyperparathyroidism. N Engl J Med 379(11):1050–1059. https://doi.org/10.1056/NEJMcp1714213

    Article  PubMed  Google Scholar 

  60. Masi L (2019) Primary Hyperparathyroidism. Front Horm Res 51:1–12. https://doi.org/10.1159/000491034

    Article  CAS  PubMed  Google Scholar 

  61. Cusano NE, Cipriani C, Bilezikian JP (2018) Management of normocalcemic primary hyperparathyroidism. Best Pract Res Clin Endocrinol Metab 32(6):837–845. https://doi.org/10.1016/j.beem.2018.09.009

    Article  PubMed  Google Scholar 

  62. Liu Y et al (2021) Differences in Clinicopathological Characteristics of Papillary Thyroid Carcinoma between Symptomatic and Asymptomatic Patients with Primary Hyperparathyroidism. Int J Endocrinol. 2021: p. 9917694.https://doi.org/10.1155/2021/9917694

  63. Li Y, Simonds WF (2016) Endocrine neoplasms in familial syndromes of hyperparathyroidism. Endocrine-related Cancer 23(6). https://doi.org/10.1530/ERC-16-0059. p. R229-R247.

  64. Conigrave AD, Ward DT (2013) Calcium-sensing receptor (CaSR): Pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 27(3):315–331. https://doi.org/10.1016/j.beem.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  65. Chavez-Abiega S et al (2020) Sensing Extracellular Calcium - An Insight into the Structure and Function of the Calcium-Sensing Receptor (CaSR). Adv Exp Med Biol 1131:1031–1063. https://doi.org/10.1007/978-3-030-12457-1_41

    Article  CAS  PubMed  Google Scholar 

  66. Belge H et al (2007) Renal expression of parvalbumin is critical for NaCl handling and response to diuretics. Proc Natl Acad Sci U S A 104(37):14849–14854. https://doi.org/10.1073/pnas.0702810104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reilly RF, Peixoto AJ, Desir GV (2010) The Evidence-Based Use of Thiazide Diuretics in Hypertension and Nephrolithiasis. Clin J Am Soc Nephrol 5(10):1893. https://doi.org/10.2215/CJN.04670510

    Article  CAS  PubMed  Google Scholar 

  68. Khan SR et al (2016) Kidney stones. Nat Rev Dis Primers 16008. 2https://doi.org/10.1038/nrdp.2016.8

  69. Wang Z et al (2018) Status of Hypertension in China. Circulation 137(22):2344–2356. https://doi.org/10.1161/CIRCULATIONAHA.117.032380

    Article  PubMed  Google Scholar 

  70. Lu J et al (2017) Prevalence, awareness, treatment, and control of hypertension in China: data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project). The Lancet 390(10112):2549–2558. https://doi.org/10.1016/S0140-6736(17)32478-9

    Article  Google Scholar 

  71. Pepe J et al (2017) Cardiovascular manifestations of primary hyperparathyroidism: a narrative review. Eur J Endocrinol 177(6):R297. https://doi.org/10.1530/EJE-17-0485

    Article  CAS  PubMed  Google Scholar 

  72. Cole JB, Florez JC (2020) Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 16(7):377–390. https://doi.org/10.1038/s41581-020-0278-5

    Article  PubMed  Google Scholar 

  73. Cho NH et al (2018) IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  74. Pippitt K, Li M, Gurgle HE (2016) Diabetes Mellitus: Screening and Diagnosis. Am Fam Physician 93(2):103–109

    PubMed  Google Scholar 

  75. Ning G et al (2009) Progress in diabetes research in China. J Diabetes 1(3):163–172. https://doi.org/10.1111/j.1753-0407.2009.00037.x

    Article  CAS  Google Scholar 

  76. Fayfman M, Pasquel FJ, Umpierrez GE (2017) Management of Hyperglycemic Crises: Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State. Med Clin North Am 101(3):587–606. https://doi.org/10.1016/j.mcna.2016.12.011

    Article  Google Scholar 

  77. Guo Q et al (2021) Decreased KLHL3 expression is involved in the activation of WNK-OSR1/SPAK-NCC cascade in type 1 diabetic mice. Pflugers Arch 473(2):185–196. https://doi.org/10.1007/s00424-020-02509-8

    Article  CAS  PubMed  Google Scholar 

  78. Yang Q, Vijayakumar A, Kahn BB (2018) Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol 19(10):654–672. https://doi.org/10.1038/s41580-018-0044-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li W, Huang E, Gao S (2017) Type 1 Diabetes Mellitus and Cognitive Impairments: A Systematic Review. J Alzheimers Dis 57(1):29–36. https://doi.org/10.3233/JAD-161250

    Article  CAS  PubMed  Google Scholar 

  80. Katsarou A et al (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3:17016. https://doi.org/10.1038/nrdp.2017.16

    Article  PubMed  Google Scholar 

  81. Zhang Y et al (2021) Dysfunction of Cullin 3 RING E3 ubiquitin ligase causes vasoconstriction and increased sodium reabsorption in diabetes. Arch Biochem Biophys 710:109000. https://doi.org/10.1016/j.abb.2021.109000

    Article  CAS  PubMed  Google Scholar 

  82. Dai L et al (2011) Birth defects surveillance in China. World J Pediatr 7(4):302–310. https://doi.org/10.1007/s12519-011-0326-0

    Article  PubMed  Google Scholar 

  83. Zhao L et al (2020) Birth prevalence of congenital heart disease in China, 1980–2019: a systematic review and meta-analysis of 617 studies. Eur J Epidemiol 35(7):631–642. https://doi.org/10.1007/s10654-020-00653-0

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liu Y et al (2019) Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 48(2):455–463. https://doi.org/10.1093/ije/dyz009

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kuster DWD et al (2019) Altered C10 domain in cardiac myosin binding protein-C results in hypertrophic cardiomyopathy. Cardiovasc Res 115(14):1986–1997. https://doi.org/10.1093/cvr/cvz111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang L et al (2017) cMyBP-C was decreased via KLHL3-mediated proteasomal degradation in congenital heart diseases. Exp Cell Res 355(1):18–25. https://doi.org/10.1016/j.yexcr.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  87. Sahin-Uysal N et al (2020) Maternal and cord blood homocysteine, vitamin B12, folate, and B-type natriuretic peptide levels at term for predicting congenital heart disease of the neonate: A case-control study. J Matern Fetal Neonatal Med 33(15):2649–2656. https://doi.org/10.1080/14767058.2019.1633300

    Article  CAS  PubMed  Google Scholar 

  88. San Juan-Reyes S et al (2020) Oxidative stress in pregnancy complicated by preeclampsia. Arch Biochem Biophys 681:108255. https://doi.org/10.1016/j.abb.2020.108255

    Article  CAS  PubMed  Google Scholar 

  89. Poon LC et al (2019) The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet 145(Suppl 1):1–33. https://doi.org/10.1002/ijgo.12802

    Article  PubMed  PubMed Central  Google Scholar 

  90. Helmo FR et al (2018) Angiogenic and antiangiogenic factors in preeclampsia. Pathol Res Pract 214(1):7–14. https://doi.org/10.1016/j.prp.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  91. Fang S, Sigmund CD (2020) PPARγ and RhoBTB1 in hypertension. Curr Opin Nephrol Hypertens 29(2):161–170. https://doi.org/10.1097/mnh.0000000000000579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pelham CJ et al (2012) Cullin-3 regulates vascular smooth muscle function and arterial blood pressure via PPARγ and RhoA/Rho-kinase. Cell Metab 16(4):462–472. https://doi.org/10.1016/j.cmet.2012.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Meor Azlan NF, Koeners MP, Zhang J (2021) Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension. Acta Pharm Sin B 11(5):1117–1128. https://doi.org/10.1016/j.apsb.2020.09.009

    Article  CAS  PubMed  Google Scholar 

  94. Ko B et al (2010) RasGRP1 stimulation enhances ubiquitination and endocytosis of the sodium-chloride cotransporter. Am J Physiol Renal Physiol 299(2):F300. https://doi.org/10.1152/ajprenal.00441.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin X et al (2020) CRL3-SPOP ubiquitin ligase complex suppresses the growth of diffuse large B-cell lymphoma by negatively regulating the MyD88/NF-kappaB signaling. Leukemia 34(5):1305–1314. https://doi.org/10.1038/s41375-019-0661-z

    Article  CAS  PubMed  Google Scholar 

  96. Romero R et al (2020) Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. Nat Cancer 1(6):589–602. https://doi.org/10.1038/s43018-020-0071-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bedard PL et al (2020) Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395(10229):1078–1088. https://doi.org/10.1016/s0140-6736(20)30164-1

    Article  CAS  PubMed  Google Scholar 

  98. Lin CM et al (2019) Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain. FASEB J 33(1):1051–1061. https://doi.org/10.1096/fj.201801023R

    Article  CAS  PubMed  Google Scholar 

  99. Wang L, Peng JB (2017) Phosphorylation of KLHL3 at serine 433 impairs its interaction with the acidic motif of WNK4: a molecular dynamics study. Protein Sci 26(2):163–173. https://doi.org/10.1002/pro.3063

    Article  CAS  PubMed  Google Scholar 

  100. Kliuk-Ben Bassat O et al (2017) Familial Hyperkalemia and Hypertension (FHHt) and KLHL3: Description of a Family with a New Recessive Mutation (S553L) Compared to a Family with a Dominant Mutation, Q309R, with Analysis of Urinary Sodium Chloride Cotransporter. Nephron 137(1):77–84. https://doi.org/10.1159/000475825

    Article  CAS  PubMed  Google Scholar 

  101. Doan D et al (2020) Novel KLHL3 Variant in an Infant With Gordon Syndrome. Clin Pediatr (Phila) 59(11):1011–1013. https://doi.org/10.1177/0009922820920938

    Article  Google Scholar 

  102. Anglani F et al (2021) Genotype-phenotype correlation in Gordon’s syndrome: report of two cases carrying novel heterozygous mutations. J Nephrol. https://doi.org/10.1007/s40620-021-01083-1

    Article  PubMed  Google Scholar 

  103. Ostrosky-Frid M et al (2020) Familial Hyperkalemic Hypertension Genotype With a Negative Phenotype: A CUL3 Mosaicism. Am J Hypertens 33(3):278–281. https://doi.org/10.1093/ajh/hpz185

    Article  PubMed  Google Scholar 

  104. Shao L et al (2018) A novel mutation in exon 9 of Cullin 3 gene contributes to aberrant splicing in pseudohypoaldosteronism type II. FEBS Open Bio 8(3):461–469. https://doi.org/10.1002/2211-5463.12389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nakano K et al (2020) Familial cases of pseudohypoaldosteronism type II harboring a novel mutation in the Cullin 3 gene. Nephrol (Carlton) 25(11):818–821. https://doi.org/10.1111/nep.13752

    Article  CAS  Google Scholar 

  106. Yavas Abali Z et al (2020) Rare cause of severe hypertension in an adolescent boy presenting with short stature: Answers. Pediatr Nephrol 35(3):405–407. https://doi.org/10.1007/s00467-019-04352-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Yuqi Wang (West Lake University, China) for the kind help and good advice provided.

Funding

This work was supported by The Natural Science Foundation of Ningbo (grant no. 2021J065), and The K.C. Wong Magna Fund of Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

YL and QL drafted the manuscript. XJ, QL and YL made substantial contributions to the interpretation, drafting the study and revising it critically for important intellectual content. XJ, and YL were major contributors in the manuscript. All authors read and approved the fnal manuscript. Data authentication is not applicable.

Corresponding author

Correspondence to Xiaofeng Jin.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Li, Q. & Jin, X. Kelch-like protein 3 in human disease and therapy. Mol Biol Rep 49, 9813–9824 (2022). https://doi.org/10.1007/s11033-022-07487-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07487-x

Keywords