Skip to main content

Advertisement

Log in

Potentials of ketogenic diet against chronic kidney diseases: pharmacological insights and therapeutic prospects

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Chronic kidney disease (CKD) is a worldwide public health concern. Nutritional interventions become a primary concern in managing various diseases, including CKD. Ketogenic diets (KD) are a popular diet and an increasingly used diet for weight loss.

Main body

With the increasing cases of CKD, KD has been proposed as a treatment by many scientists. Several studies have shown that KD can slow down the progression rate of renal abnormalities. Also, this diet is regarded as a safe route for managing CKD. CKD is generally associated with increased inflammation, oxidative stress, fibrosis, autophagy dysfunction, and mitochondrial dysfunction, while all of these can be attenuated by KD. The protective effect of KD is mainly mediated through inhibition of ROS, NF-κB, and p62 signaling.

Conclusions

It is suggested that KD could be considered a new strategy for managing and treating CKD more carefully. This review explores the potential of KD on CKD and the mechanism involved in KD-mediated kidney protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Yoshida T, Kumagai H (2016) Chronic kidney disease and nutrition. Clin Calcium 26:369–374

    CAS  PubMed  Google Scholar 

  2. Forbes A, Gallagher H (2020) Chronic kidney disease in adults: assessment and management. Clin Med (Lond) 20(2):128–132. https://doi.org/10.7861/clinmed.cg.20.2

  3. Obrador GT, Levin A (2019) CKD hotspots: challenges and areas of opportunity. Semin Nephrol 39:308–314. https://doi.org/10.1016/j.semnephrol.2019.02.009

    Article  PubMed  Google Scholar 

  4. Lunyera J, Mohottige D, von Isenburg M et al (2016) CKD of uncertain etiology: a systematic review. Clin J Am Soc Nephrol 11:379–385. https://doi.org/10.2215/CJN.07500715

    Article  CAS  PubMed  Google Scholar 

  5. Weaver VM, Fadrowski JJ, Jaar BG (2015) Global dimensions of chronic kidney disease of unknown etiology (CKDu): a modern era environmental and/or occupational nephropathy? BMC Nephrol 16:145. https://doi.org/10.1186/s12882-015-0105-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Obrador GT, Schultheiss UT, Kretzler M et al (2017) Genetic and environmental risk factors for chronic kidney disease. Kidney Int Suppl 7:88–106. https://doi.org/10.1016/j.kisu.2017.07.004

    Article  Google Scholar 

  7. López-Novoa JM, Martínez-Salgado C, Rodríguez-Peña AB, Hernández FJL (2010) Common pathophysiological mechanisms of chronic kidney disease: Therapeutic perspectives. Pharmacol Ther 128:61–81. https://doi.org/10.1016/j.pharmthera.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  8. Braga PC, Alves MG, Rodrigues AS, Oliveira PF (2022) Mitochondrial pathophysiology on chronic kidney disease. Int J Mol Sci 23:1776. https://doi.org/10.3390/ijms23031776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koppe L, De Oliveira MC, Fouque D (2019) Ketoacid analogues supplementation in chronic kidney disease and future perspectives. Nutrients 11:2071. https://doi.org/10.3390/nu11092071

    Article  CAS  PubMed Central  Google Scholar 

  10. Lin S (2009) New research areas for keto acid/amino acid-supplemented protein diets. J Ren Nutr 19:S30–S32. https://doi.org/10.1053/j.jrn.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  11. Yuan X, Wang J, Yang S et al (2020) Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: a systematic review and meta-analysis. Nutr Diabetes 10:38. https://doi.org/10.1038/s41387-020-00142-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Augustin K, Khabbush A, Williams S et al (2018) Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 17:84–93. https://doi.org/10.1016/S1474-4422(17)30408-8

    Article  CAS  PubMed  Google Scholar 

  13. D’Andrea Meira I, Romão TT, Do Prado HJP et al (2019) Ketogenic diet and epilepsy: what we know so far. Front Neurosci 13:5. https://doi.org/10.3389/fnins.2019.00005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zarnowska IM (2020) Therapeutic use of the ketogenic diet in refractory epilepsy: what we know and what still needs to be learned. Nutrients 12:2616. https://doi.org/10.3390/nu12092616

    Article  CAS  PubMed Central  Google Scholar 

  15. Shah BV, Patel ZM (2016) Role of low protein diet in management of different stages of chronic kidney disease—practical aspects. BMC Nephrol 17:156. https://doi.org/10.1186/s12882-016-0360-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garneata L, Mircescu G (2013) Effect of low-protein diet supplemented with keto acids on progression of chronic kidney disease. J Ren Nutr 23:210–213. https://doi.org/10.1053/j.jrn.2013.01.030

    Article  CAS  PubMed  Google Scholar 

  17. Masood W, Annamaraju P, Uppaluri KR (2022) Ketogenic diet. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL) 2022 Jan. 2021 Nov 26.

  18. Veech RL (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fat Acids 70:309–319. https://doi.org/10.1016/j.plefa.2003.09.007

    Article  CAS  Google Scholar 

  19. Wheless JW (2008) History of the ketogenic diet. Epilepsia 49:3–5. https://doi.org/10.1111/j.1528-1167.2008.01821.x

    Article  PubMed  Google Scholar 

  20. McKenzie AL, Hallberg SJ, Creighton BC et al (2017) A novel intervention including individualized nutritional recommendations reduces hemoglobin A1c level, medication use, and weight in type 2 diabetes. JMIR Diabetes 2:e5. https://doi.org/10.2196/diabetes.6981

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shilpa J, Mohan V (2018) Ketogenic diets: boon or bane? Indian J Med Res 148:251–253

    Article  Google Scholar 

  22. Jassal SK, Kritz-Silverstein D, Barrett-Connor E (2010) A prospective study of albuminuria and cognitive function in older adults. Am J Epidemiol 171:277–286. https://doi.org/10.1093/aje/kwp426

    Article  PubMed  PubMed Central  Google Scholar 

  23. National Institute of Diabetes and Digestive and Kidney Diseases (2016) Albuminuria: albumin in the urine

  24. Liu D, Wu M, Li L et al (2018) Low-protein diet supplemented with ketoacids delays the progression of diabetic nephropathy by inhibiting oxidative stress in the KKAy mice model. Br J Nutr 119:22–29. https://doi.org/10.1017/S0007114517003208

    Article  CAS  PubMed  Google Scholar 

  25. Wang M, Xu H, Chong Lee Shin OLS et al (2019) Compound α-keto acid tablet supplementation alleviates chronic kidney disease progression via inhibition of the NF-kB and MAPK pathways. J Transl Med 17:122. https://doi.org/10.1186/s12967-019-1856-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang D, Wei L, Yang Y, Liu H (2018) Dietary supplementation with ketoacids protects against CKD-induced oxidative damage and mitochondrial dysfunction in skeletal muscle of 5/6 nephrectomised rats. Skelet Muscle. https://doi.org/10.1186/s13395-018-0164-z

    Article  PubMed  PubMed Central  Google Scholar 

  27. Di Iorio BR, Bellizzi V, Bellasi A et al (2013) Phosphate attenuates the anti-proteinuric effect of very low-protein diet in CKD patients. Nephrol Dial Transplant 28:632–640. https://doi.org/10.1093/ndt/gfs477

    Article  CAS  PubMed  Google Scholar 

  28. Sato H, Shibata M, Shimizu T et al (2013) Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience 248:345–358. https://doi.org/10.1016/j.neuroscience.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  29. Navarro-Yepes J, Zavala-Flores L, Anandhan A et al (2014) Antioxidant gene therapy against neuronal cell death. Pharmacol Ther 142:206–230. https://doi.org/10.1016/j.pharmthera.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  30. Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017:8416763. https://doi.org/10.1155/2017/8416763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uddin MJ, Pak ES, Ha H (2018) Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress. Korean J Physiol Pharmacol. https://doi.org/10.4196/kjpp.2018.22.5.567

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kwon G, Uddin MJ, Lee G et al (2017) A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget. https://doi.org/10.18632/oncotarget.18540

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uddin MJ, Kim EH, Hannan MA, Ha H (2021) Pharmacotherapy against oxidative stress in chronic kidney disease: promising small molecule natural products targeting nrf2-ho-1 signaling. Antioxidants. https://doi.org/10.3390/antiox10020258

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vaziri ND (2004) Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens 13:93–99. https://doi.org/10.1097/00041552-200401000-00013

    Article  CAS  PubMed  Google Scholar 

  35. Aparicio M, Bellizzi V, Chauveau P et al (2012) Protein-restricted diets plus keto/amino acids—a valid therapeutic approach for chronic kidney disease patients. J Ren Nutr 22:S1–S21. https://doi.org/10.1053/j.jrn.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  36. Greco T, Glenn TC, Hovda DA, Prins ML (2016) Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J Cereb Blood Flow Metab 36:1603–1613. https://doi.org/10.1177/0271678X15610584

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J-Y, Yin Y, Ni L et al (2016) Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin-angiotensin system. Br J Nutr 116:1491–1501. https://doi.org/10.1017/S0007114516003536

    Article  CAS  PubMed  Google Scholar 

  38. de Gomes TKC, de Oliviera SL, da Ataide TR, Trindade Filho EM (2011) The role of the ketogenic diet on oxidative stress present in experimental epilepsy. J Epilepsy Clin Neurophysiol 17:54–64. https://doi.org/10.1590/S1676-26492011000200005

    Article  Google Scholar 

  39. Milder JB, Liang LP, Patel M (2010) Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol Dis 40:238–244. https://doi.org/10.1016/j.nbd.2010.05.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stenvinkel P, Wanner C, Metzger T et al (2002) Inflammation and outcome in end-stage renal failure: does female gender constitute a survival advantage? Kidney Int 62:1791–1798. https://doi.org/10.1046/j.1523-1755.2002.00637.x

    Article  PubMed  Google Scholar 

  41. Don BR, Kaysen GA (2000) Assessment of inflammation and nutrition in patients with end-stage renal disease. J Nephrol 13:249–259

    CAS  PubMed  Google Scholar 

  42. Stenvinkel P, Alvestrand A (2002) Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin Dial 15:329–337. https://doi.org/10.1046/j.1525-139X.2002.00083.x

    Article  PubMed  Google Scholar 

  43. Moni A, Iqbal A, Uddin M (2018) Resveratrol attenuates inflammation through tristetraprolin expression in human hepatocytes. J Adv Biotechnol Exp Ther 1:78–82. https://doi.org/10.5455/jabet.2018.d14

    Article  Google Scholar 

  44. Uddin MJ, Li C-S, Joe Y et al (2015) Carbon monoxide inhibits tenascin-C mediated inflammation via IL-10 expression in a septic mouse model. Mediators Inflamm 2015:613249. https://doi.org/10.1155/2015/613249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jamal Uddin M, Joe Y, Zheng M et al (2013) A functional link between heme oxygenase-1 and tristetraprolin in the anti-inflammatory effects of nicotine. Free Radic Biol Med 65:1331–1339. https://doi.org/10.1016/j.freeradbiomed.2013.09.027

    Article  CAS  PubMed  Google Scholar 

  46. Sohn M, Kim K, Uddin MJ et al (2017) Delayed treatment with fenofibrate protects against high-fat diet-induced kidney injury in mice: the possible role of ampk autophagy. Am J Physiol 312:F323–F334. https://doi.org/10.1152/ajprenal.00596.2015

    Article  CAS  Google Scholar 

  47. Liu Z, Ren Z, Zhang J et al (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477. https://doi.org/10.3389/fphys.2018.00477

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rhyu H, Cho S-Y, Roh H-T (2014) The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes. J Exerc Rehabil 10:362–366. https://doi.org/10.12965/jer.140178

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y-Y, Huang J, Yang M et al (2015) Effect of a low-protein diet supplemented with keto-acids on autophagy and inflammation in 5/6 nephrectomized rats. Biosci Rep. https://doi.org/10.1042/BSR20150069

  50. Kisseleva T, Brenner DA (2008) Fibrogenesis of parenchymal organs. In: Proceedings of the American Thoracic Society, pp 338–342

  51. Robertson H, Kirby JA, Yip WW et al (2007) Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 45:977–981. https://doi.org/10.1002/hep.21624

    Article  CAS  PubMed  Google Scholar 

  52. Willis BC, Borok Z (2007) TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol 293:525–534. https://doi.org/10.1152/ajplung.00163.2007

    Article  CAS  Google Scholar 

  53. Hwang I, Uddin MJ, Lee G et al (2019) Peroxiredoxin 3 deficiency accelerates chronic kidney injury in mice through interactions between macrophages and tubular epithelial cells. Free Radic Biol Med 131:162–172. https://doi.org/10.1016/j.freeradbiomed.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  54. Jeong BY, Uddin MJ, Park JH et al (2016) Novel plasminogen activator inhibitor-1 inhibitors prevent diabetic kidney injury in a mouse model. PLoS ONE 11:e0157012. https://doi.org/10.1371/journal.pone.0157012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cho MH (2010) Renal fibrosis. J Pediatr 53:735–740. https://doi.org/10.3345/kjp.2010.53.7.735

    Article  Google Scholar 

  56. Torres JA, Kruger SL, Broderick C et al (2019) Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab 30:1007-1023.e5. https://doi.org/10.1016/j.cmet.2019.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schulman IH, Zhou MS, Treuer AV et al (2010) Altered renal expression of angiotensin ii receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats. Am J Nephrol 32:249–261. https://doi.org/10.1159/000318607

    Article  CAS  PubMed  Google Scholar 

  58. Jang IA, Kim EN, Lim JH et al (2018) Effects of resveratrol on the renin-angiotensin system in the aging kidney. Nutrients 10:1741. https://doi.org/10.3390/nu10111741

    Article  CAS  PubMed Central  Google Scholar 

  59. You Y, Guo Y, Jia P et al (2020) Ketogenic diet aggravates cardiac remodeling in adult spontaneously hypertensive rats. Nutr Metab (Lond). https://doi.org/10.1186/s12986-020-00510-7

    Article  Google Scholar 

  60. Lahiri V, Hawkins WD, Klionsky DJ (2019) Watch what you (self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab 29:803–826. https://doi.org/10.1016/j.cmet.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patergnani S, Pinton P (2015) Mitophagy and mitochondrial balance. Methods Mol Biol 1241:181–194. https://doi.org/10.1007/978-1-4939-1875-1_15

    Article  CAS  PubMed  Google Scholar 

  62. Wang BH, Hou Q, Lu YQ et al (2018) Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res 1678:106–115. https://doi.org/10.1016/j.brainres.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  63. McCarty MF, DiNicolantonio JJ, O’Keefe JH (2015) Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1. Med Hypotheses 85:631–639. https://doi.org/10.1016/j.mehy.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  64. Joseph AM, Joanisse DR, Baillot RG, Hood DA (2012) Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res 2012:16. https://doi.org/10.1155/2012/642038

    Article  CAS  Google Scholar 

  65. Ma ZA, Zhao Z, Turk J (2012) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012:11. https://doi.org/10.1155/2012/703538

    Article  CAS  Google Scholar 

  66. Reddy PH, Reddy TP (2011) Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 8:393–409. https://doi.org/10.2174/156720511795745401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Niyazov DM, Kahler SG, Frye RE (2016) Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol 7:122–137. https://doi.org/10.1159/000446586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greco T, Glenn TC, Hovda DA, Prins ML (2016) Ketogenic diet decreases oxidative stressand improves mitochondrial respiratorycomplex activity. J Cereb Blood Flow Metab 36:1603–1613. https://doi.org/10.1177/0271678X15610584

    Article  CAS  PubMed  Google Scholar 

  69. Hill NR, Fatoba ST, Oke JL et al (2016) Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS ONE 11:e0158765

    Article  Google Scholar 

  70. Cahill GF, Veech RL (2003) Ketoacids? Good medicine? Trans Am Clin Climatol Assoc 114:149–163

    PubMed  PubMed Central  Google Scholar 

  71. Kalra S, Jain A, Ved J, Unnikrishnan AG (2016) Sodium-glucose cotransporter 2 inhibition and health benefits: The Robin Hood effect. Indian J Endocrinol Metab 20:725–729. https://doi.org/10.4103/2230-8210.183826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bonuccelli G, Tsirigos A, Whitaker-Menezes D et al (2010) Ketones and lactate “fuel” tumor growth and metastasis. Cell Cycle 9:3506–3514. https://doi.org/10.4161/cc.9.17.12731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Murray AJ, Knight NS, Cole MA et al (2016) Novel ketone diet enhances physical and cognitive performance. FASEB J 30:4021–4032. https://doi.org/10.1096/fj.201600773R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rizzetto F, de Leal VO, Bastos LS et al (2017) Chronic kidney disease progression: a retrospective analysis of 3-year adherence to a low protein diet. Ren Fail 39:357–362. https://doi.org/10.1080/0886022X.2017.1282374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang J, Xie H, Fang M et al (2016) Keto-supplemented low protein diet: a valid therapeutic approach for patients with steroid-resistant proteinuria during early-stage chronic kidney disease. J Nutr Heal Aging 20:420–427. https://doi.org/10.1007/s12603-015-0612-y

    Article  CAS  Google Scholar 

  76. Evans M (2018) Keto diets: good, bad or ugly? J Physiol 596:4561. https://doi.org/10.1113/JP276703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murphy EA, Jenkins TJ (2019) A ketogenic diet for reducing obesity and maintaining capacity for physical activity: hype or hope? Curr Opin Clin Nutr Metab Care 22:314–319. https://doi.org/10.1097/MCO.0000000000000572

    Article  PubMed  Google Scholar 

  78. Pollock CA, Ibels LS, Zhu FY et al (1997) Protein intake in renal disease. J Am Soc Nephrol 8:777–783

    Article  CAS  Google Scholar 

  79. Mehrotra R, Nolph KD (2000) Treatment of advanced renal failure: Low-protein diets or timely initiation of dialysis? Kidney Int 58:1381–1388. https://doi.org/10.1046/j.1523-1755.2000.00300.x

    Article  CAS  PubMed  Google Scholar 

  80. Aparicio M, Chauveau P, De Précigout V et al (2000) Nutrition and outcome on renal replacement therapy of patients with chronic renal failure treated by a supplemented very low protein diet. J Am Soc Nephrol 11:708–716

    Article  Google Scholar 

  81. Coresh J, Walser M, Hill S (1995) Survival on dialysis among chronic renal failure patients treated with a supplemented lowprotein diet before dialysis. J Am Soc Nephrol 6:1379–1385

    Article  CAS  Google Scholar 

  82. Seidelmann SB, Claggett B, Cheng S et al (2018) Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 3:e419–e428. https://doi.org/10.1016/S2468-2667(18)30135-X

    Article  PubMed  PubMed Central  Google Scholar 

  83. Uribarri J, Cai W, Peppa M et al (2007) Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol Ser A 62:427–433. https://doi.org/10.1093/gerona/62.4.427

    Article  Google Scholar 

  84. Menon V, Kopple JD, Wang X et al (2009) Effect of a very lowprotein diet on outcomes: long-term follow-up of the modification of diet in renal disease (MDRD) study. Am J Kidney Dis 53:208–217. https://doi.org/10.1053/j.ajkd.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  85. Grandl G, Straub L, Rudigier C et al (2018) Short-term feeding of a ketogenic diet induces more severe hepatic insulin resistance than an obesogenic high-fat diet. J Physiol 596:4597–4609. https://doi.org/10.1113/JP275173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zupec-Kania B, Zupanc ML (2008) Long-term management of the ketogenic diet: seizure monitoring, nutrition, and supplementation. Epilepsia 49:23–26. https://doi.org/10.1111/j.1528-1167.2008.01827.x

    Article  PubMed  Google Scholar 

  87. Kabi F (2018) Observational study on CKD treatment with a ketosteril supplemented protein-restricted diet (Keto-024-CNI)

  88. Garneata L (2017) Supplemented very low protein diet and the progression of chronic kidney disease (KETOPROG)

  89. Furth SL, Casey JC, Pyzik PL et al (2000) Risk factors for urolithiasis in children on the ketogenic diet. Pediatr Nephrol 15:125–128. https://doi.org/10.1007/s004670000443

    Article  CAS  PubMed  Google Scholar 

  90. Crosby L, Davis B, Joshi S et al (2021) Ketogenic diets and chronic disease: Weighing the benefits against the risks. Front Nutr 8:702802. https://doi.org/10.3389/fnut.2021.702802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin J, Hu FB, Curhan GC (2010) Associations of diet with albuminuria and kidney function decline. Clin J Am Soc Nephrol 5:836–843. https://doi.org/10.2215/CJN.08001109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mihai S, Codrici E, Popescu ID et al (2018) Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res 2018:1–16. https://doi.org/10.1155/2018/2180373

    Article  CAS  Google Scholar 

  93. Gupta L, Khandelwal D, Kalra S et al (2017) Ketogenic diet in endocrine disorders: Current perspectives. J Postgrad Med 63:242–251. https://doi.org/10.4103/jpgm.JPGM_16_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lutvyani A, Tjempakasari A, Rejeki PS (2021) Long-term ketogenic diet alters kidney function through increasing serum creatinine levels in mice. J Hunan Univ (Nat Sci) 48:113–120

    Google Scholar 

  95. Batch JT, Lamsal SP, Adkins M et al (2020) Advantages and disadvantages of the ketogenic diet: a review article. Cureus 12:e9639. https://doi.org/10.7759/cureus.9639

    Article  PubMed  PubMed Central  Google Scholar 

  96. Deniz Ayli M, Ayli M, Ensari C et al (2000) Effect of low-protein diet supplemented with keto acids on progression of disease in patients with chronic renal failure. Nephron 84:288–289. https://doi.org/10.1159/000045596

    Article  CAS  PubMed  Google Scholar 

  97. Milovanova SY, Milovanov YS, Taranova MV, Dobrosmyslov IA (2017) Effects of keto/amino acids and a low-protein diet on the nutritional status of patients with Stages 3B–4 chronic kidney disease. Ter Arkh 89:30–33. https://doi.org/10.17116/terarkh201789630-33

    Article  PubMed  Google Scholar 

  98. Piccoli GB, Leone F, Attini R et al (2014) Association of low-protein supplemented diets with fetal growth in pregnant women with CKD. Clin J Am Soc Nephrol 9:864–873. https://doi.org/10.2215/CJN.06690613

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cupisti A, D’Alessandro C, Morelli E et al (2004) Nutritional status and dietary manipulation in predialysis chronic renal failure patients. J Ren Nutr 14:127–133. https://doi.org/10.1053/j.jrn.2004.04.002

    Article  PubMed  Google Scholar 

  100. Peuchant E, Delmas-Beauvieux M-C, Dubourg L et al (1997) Antioxidant effects of a supplemented very low protein diet in chronic renal failure. Free Radic Biol Med 22:313–320. https://doi.org/10.1016/S0891-5849(96)00282-1

    Article  CAS  PubMed  Google Scholar 

  101. Liguori TTA, Melchert A, Takahira RK et al (2018) Randomized controlled clinical trial of ketoanalogues supplementation in dogs with chronic kidney disease. Pesqui Vet Bras 38:489–495. https://doi.org/10.1590/1678-5150-PVB-5245

    Article  Google Scholar 

  102. Khan IA, Nasiruddin M, Haque SF, Khan RA (2014) A randomized clinical trial to evaluate the efficacy and safety of α-Keto amino acids in stage 3 and 4 of chronic kidney disease. Asian J Pharm Clin Res 7:21–24

    CAS  Google Scholar 

  103. Teplan V (2004) Supplements of keto acids in patients with chronic renal failure. Klin Biochem a Metab 12:24–26

    Google Scholar 

  104. Ell S, Fynn M, Richards P, Halliday D (1978) Metabolic studies with keto acid diets. Am J Clin Nutr 31:1776–1783. https://doi.org/10.1093/ajcn/31.10.1776

    Article  CAS  PubMed  Google Scholar 

  105. Aparicio M, Gin H, Potaux L et al (1989) Effect of a ketoacid diet on glucose tolerance and tissue insulin sensitivity. Kidney Int Suppl 27:S231–S235

    CAS  PubMed  Google Scholar 

  106. Chen N, Jin Y, Ren H et al (2012) Anti-inflammatory effects of low protein diet supplemented with keto-amino acid in the treatment of type 2 diabetic nephropathy. Kidney Res Clin Pract 31:A24. https://doi.org/10.1016/j.krcp.2012.04.358

    Article  Google Scholar 

  107. Bellizzi V, Calella P, Hernández JN et al (2018) Safety and effectiveness of low-protein diet supplemented with ketoacids in diabetic patients with chronic kidney disease. BMC Nephrol. https://doi.org/10.1186/s12882-018-0914-5

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fouque D, Chen J, Chen W et al (2016) Adherence to ketoacids/essential amino acids-supplemented low protein diets and new indications for patients with chronic kidney disease. BMC Nephrol 17:63. https://doi.org/10.1186/s12882-016-0278-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mou S, Li J, Yu Z et al (2013) Keto acid-supplemented low-protein diet for treatment of adult patients with hepatitis B virus infection and chronic glomerulonephritis. J Int Med Res 41:129–137. https://doi.org/10.1177/0300060512474758

    Article  CAS  PubMed  Google Scholar 

  110. Gao X, Wu J, Dong Z et al (2010) A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone. Br J Nutr 103:608–616. https://doi.org/10.1017/S0007114509992108

    Article  CAS  PubMed  Google Scholar 

  111. Gao X, Huang L, Grosjean F et al (2011) Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: A role for KLF15. Kidney Int 79:987–996. https://doi.org/10.1038/ki.2010.539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Jamal Uddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Hossain, K.S., Moni, A. et al. Potentials of ketogenic diet against chronic kidney diseases: pharmacological insights and therapeutic prospects. Mol Biol Rep 49, 9749–9758 (2022). https://doi.org/10.1007/s11033-022-07460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07460-8

Keywords