Skip to main content

Advertisement

Log in

The development of molecular typing in canine mammary carcinomas

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mammary tumors are the most frequent neoplasia in old female dogs and present challenges in diagnosis and prognosis owing to heterogeneity. Along with the rapid development of biotechnology, the molecular subtyping of canine mammary carcinomas has been researched, and provides an important reference basis for diagnosis, treatment, prognosis, and even prediction of recurrence rate. Therefore, the molecular classification of canine mammary carcinomas has gained a broad clinical application prospect. However, the existing molecular markers of canine mammary carcinomas are still unable to meet the expanding clinical needs with poor clinical feasibility. Thus, it is urgent to develop more applicable biomarkers appropriate for personalized treatment modalities. At present, the molecular typing of canine mammary carcinomas is not fully understood, and it is first reviewed in this study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Sorenmo K (2003) Canine mammary gland tumors. Veterinary Clin N Am 33(3):573–596

    Article  Google Scholar 

  2. Salas Y et al (2015) Epidemiological study of mammary tumors in female dogs diagnosed during the period 2002–2012: a growing animal health problem. PLoS ONE 10(5):e0127381

    Article  PubMed  PubMed Central  Google Scholar 

  3. Burrai GP et al (2020) A statistical analysis of risk factors and biological behavior in canine mammary tumors: a multicenter study. Animals (Basel). 10:9

    Google Scholar 

  4. Borghesi J et al (2021) Evaluation of immunohistopathological profile of tubular and solid canine mammary carcinomas. Res Vet Sci 136:119–126

    Article  CAS  PubMed  Google Scholar 

  5. Goldschmidt M et al (2011) Classification and grading of canine mammary tumors. Vet Pathol 48(1):117

    Article  CAS  PubMed  Google Scholar 

  6. Tesi M et al (2020) Role of body condition score and adiponectin expression in the progression of canine mammary carcinomas. Vet Med Sci 6(3):265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kristiansen VM et al (2016) Effect of ovariohysterectomy at the time of tumor removal in dogs with mammary carcinomas: a randomized controlled trial. J Vet Intern Med 30(1):230–241

    Article  CAS  PubMed  Google Scholar 

  8. Tran C et al (2016) Surgical treatment of mammary carcinomas in dogs with or without postoperative chemotherapy. Vet Comp Oncol 14(3):252–262

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen F et al (2018) Canine invasive mammary carcinomas as models of human breast cancer. Part 1: natural history and prognostic factors. Breast Cancer Res Treat 84, 106535

    Google Scholar 

  10. Perou C et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  11. Sassi F et al (2010) Molecular-based tumour subtypes of canine mammary carcinomas assessed by immunohistochemistry. BMC Vet Res 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gama A et al (2008) Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification. Virchows Arch 453(2):123–132

    Article  CAS  PubMed  Google Scholar 

  13. Barzaman K et al (2020) Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol 84:106535

    Article  CAS  PubMed  Google Scholar 

  14. Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parker J et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goldhirsch A et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Serra K et al (2014) The new classification of breast cancers: finding the luminal A. Rev Bras Ginecol Obst 36(12):575–580

    Article  Google Scholar 

  18. Burstein M et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y et al (2016) Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res 18(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang Y et al (2019) Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell 35(3):428-440e425

    Article  CAS  PubMed  Google Scholar 

  21. Andrade F et al (2020) Large miRNA survival analysis reveals a prognostic four-biomarker signature for triple negative breast cancer. Genet Mol Biol 43:1

    Article  Google Scholar 

  22. Ahern T et al (1996) Expression of the oncogene c-erbB-2 in canine mammary cancers and tumor-derived cell lines. Am J Vet Res 57(5):693–696

    CAS  PubMed  Google Scholar 

  23. Graham J et al (1999) Immunohistochemical assay for detecting estrogen receptors in canine mammary tumors. Am J Vet Res 60(5):627–630

    CAS  PubMed  Google Scholar 

  24. Kim NH et al (2013) Identification of triple-negative and basal-like canine mammary carcinomas using four basal markers. J Comp Pathol 148(4):298–306

    Article  CAS  PubMed  Google Scholar 

  25. Im KS et al (2013) Breed-related differences in altered BRCA1 expression, phenotype and subtype in malignant canine mammary tumors. Vet J 195(3):366–372

    Article  CAS  PubMed  Google Scholar 

  26. Im KS et al (2014) Analysis of a new histological and molecular-based classification of canine mammary neoplasia. Vet Pathol 51(3):549–559

    Article  CAS  PubMed  Google Scholar 

  27. Abadie J et al (2018) Canine invasive mammary carcinomas as models of human breast cancer. Part 2: immunophenotypes and prognostic significance. Breast Cancer Res Treat 167(2):459–468

    Article  CAS  PubMed  Google Scholar 

  28. Levi M et al (2021) High intrinsic expression of p-glycoprotein and breast cancer resistance protein in canine mammary carcinomas regardless of immunophenotype and outcome. Animals 11(3):658

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kneubil M et al (2013) Breast cancer subtype approximations and loco-regional recurrence after immediate breast reconstruction. Eur J Surg Oncol 39(3):260–265

    Article  CAS  PubMed  Google Scholar 

  30. Tsang J et al (2020) Molecular classification of breast cancer. Adv Anat Pathol 27(1):27–35

    Article  CAS  PubMed  Google Scholar 

  31. Jia WJ et al (2014) HER2-enriched tumors have the highest risk of local recurrence in chinese patients treated with breast conservation therapy. Asian Pac J Cancer Prev 15(1):315–320

    Article  PubMed  Google Scholar 

  32. Waks AG et al (2019) Breast cancer treatment: a review. JAMA 321(3):288–300

    Article  CAS  PubMed  Google Scholar 

  33. Varallo et al (2019) Prognostic phenotypic classification for canine mammary tumors. Oncol Lett 18:6545

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tavares W et al (2010) Evaluation of adverse effects in tamoxifen exposed healthy female dogs. Acta Vet Scand 52:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Metzger-Filho O et al (2013) Patterns of Recurrence and outcome according to breast cancer subtypes in lymph node-negative disease: results from international breast cancer study group trials VIII and IX. J Clin Oncol 31(25):3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellis M et al (2001) Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin oncology: official J Am Soc Clin Oncol 19(18):3808–3816

    Article  CAS  Google Scholar 

  37. Tremont A et al (2017) Endocrine therapy for early breast cancer: updated review. Ochsner J 17(4):405–411

    PubMed  PubMed Central  Google Scholar 

  38. Valdivia G et al (2021) From conventional to precision therapy in canine mammary cancer: a comprehensive review. Front Vet Sci 8

    Article  PubMed  PubMed Central  Google Scholar 

  39. Denkert C et al (2017) Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet (London England) 389(10087):2430–2442

    Article  CAS  Google Scholar 

  40. Babyshkina N et al (2014) Neoadjuvant chemotherapy for different molecular breast cancer subtypes: a retrospective study in Russian population. Med Oncol 31(9):165

    Article  PubMed  Google Scholar 

  41. Li F et al (2018) Analysis of the relevance between molecular subtypes and efficacy of neoadjuvant chemotherapy in breast cancer as well as its prognostic factors. Pathol Res Pract 214(8):1166–1172

    Article  CAS  PubMed  Google Scholar 

  42. Pattarawat P et al (2021) A triple combination gemcitabine + romidepsin + cisplatin to effectively control triple-negative breast cancer tumor development, recurrence, and metastasis. Cancer Chemother Pharmacol 88:415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stoetzer O et al (2021) Post-neoadjuvant gemcitabine and cisplatin with regional hyperthermia for patients with triple-negative breast cancer and non-pCR after neoadjuvant chemotherapy: a single-institute experience. Breast Care 16:173–1802

    Article  PubMed  Google Scholar 

  44. Ntzifa A et al (2021) PIM1androgen receptor and expression in tumor tissue of patients with triple-negative breast cancer. Cancer Genom Proteom 18(2):147–156

    Article  CAS  Google Scholar 

  45. Caceres S et al (2018) In vitro and in vivo effect of flutamide on steroid hormone secretion in canine and human inflammatory breast cancer cell lines. Vet Comp Oncol 16(1):148–158

    Article  CAS  PubMed  Google Scholar 

  46. Hansen M et al (2021) Identification of lysosome-targeting drugs with anti-inflammatory activity as potential invasion inhibitors of treatment resistant HER2 positive cancers. Cell Oncol (Dordr) 44:805

    Article  CAS  Google Scholar 

  47. Ressel L et al (2013) HER-2 expression in canine morphologically normal, hyperplastic and neoplastic mammary tissues and its correlation with the clinical outcome. Res Vet Sci 94(2):299–305

    Article  CAS  PubMed  Google Scholar 

  48. Seung BJ et al (2020) Quantitative analysis of HER2 mRNA expression by RNA in situ hybridization in canine mammary gland tumors: Comparison with immunohistochemistry analysis. PLoS ONE 15(2):e0229031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsuboi M et al (2019) Assessment of HER2 expression in canine urothelial carcinoma of the urinary bladder. Vet Pathol 56(3):369–376

    Article  CAS  PubMed  Google Scholar 

  50. Canadas-Sousa A et al (2019) Estrogen receptors genotypes and canine mammary neoplasia. BMC Veterinary Res 15:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work is supported by grants from the National Science Foundation of China (No. 31672616), National Key R&D Program of China (No. 2016YFD0501000), the Natural Science Foundation of Jilin Province (No. 20210101002JC), and the Fundamental Research Funds for the Central Universities (No. JLUXKJC2021ZY09).

Author information

Authors and Affiliations

Authors

Contributions

ZHH devised, structured, and wrote the manuscript. All the authors reviewed and corrected the manuscript.

Corresponding author

Correspondence to Guanghong Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Du, C., Tang, X. et al. The development of molecular typing in canine mammary carcinomas. Mol Biol Rep 49, 8943–8951 (2022). https://doi.org/10.1007/s11033-022-07383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07383-4

Keywords

Navigation