Skip to main content

Impact of superovulation and in vitro fertilization on LINE-1 copy number and telomere length in C57BL/6 J mice blastocysts

Abstract

Objective

Millions of babies have been conceived by IVF, yet debate about its safety to offspring continues. We hypothesized that superovulation and in vitro fertilization (IVF) promote genomic changes, including altered telomere length (TL) and activation of the retrotransposon LINE-1 (L1), and tested this hypothesis in a mouse model.

Material and methods

Experimental study analyzing TL and L1 copy number in C57BL/6 J mouse blastocysts in vivo produced from natural mating cycles (N), in vivo produced following superovulation (S), or in vitro produced following superovulation (IVF). We also examined the effects of prolonged culture on TL and L1 copy number in the IVF group comparing blastocysts cultured 96 h versus blastocysts cultured 120 h. TL and L1 copy number were measured by Real Time PCR.

Results

TL in S (n = 77; Mean: 1.50 ± 1.15; p = 0.0007) and IVF (n = 82; Mean: 1.72 ± 1.44; p < 0.0001) exceeded that in N (n = 16; Mean: 0.61 ± 0.27). TL of blastocysts cultured 120 h (n = 15, Mean: 2.14 ± 1.05) was significantly longer than that of embryos cultured for 96 h (n = 67, Mean: 1.63 ± 1.50; p = 0.0414). L1 copy number of blastocysts cultured for 120 h (n = 15, Mean: 1.71 ± 1.49) exceeded that of embryos cultured for 96 h (n = 67, Mean: 0.95 ± 1.03; p = 0.0162).

Conclusions

Intriguingly ovarian stimulation, alone or followed by IVF, produced embryos with significantly longer telomeres compared to in vivo, natural cycle-produced embryos. The significance of this enriched telomere endowment for the health and longevity of offspring born from IVF merit future studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data underlying this study will be shared on reasonable request to the corresponding author.

Code availability

Not applicable.

References

  1. Iqbal K, Kues WA, Baulain U, Garrels W, Herrmann D, Niemann H (2011) Species-specific telomere length differences between blastocyst cell compartments and ectopic telomere extension in early bovine embryos by human telomerase reverse transcriptase. Biol Reprod 84:723–733. https://doi.org/10.1095/biolreprod.110.087205

    Article  CAS  PubMed  Google Scholar 

  2. O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171–181. https://doi.org/10.1038/nrm2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozturk S, Sozen B, Demir N (2014) Telomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species telomeres includes. Mol Hum Reprod 20:15–30. https://doi.org/10.1093/molehr/gat055

    Article  CAS  PubMed  Google Scholar 

  4. Vasilopoulos E, Fragkiadaki P, Kalliora C, Fragou D, Docea AO, Vakonaki E, Tsoukalas D, Calina D, Buga AM, Georgiadis G, Mamoulakis C, Makrigiannakis A, Spandidos DA, Tsatsakis A (2019) The association of female and male infertility with telomere length (Review). Int J Mol Med 44:375–389. https://doi.org/10.3892/ijmm.2019.4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Armstrong CA, Tomita K. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells. Open Biol https://doi.org/10.1098/rsob.160338.

  6. Liu L, Bailey SM, Okuka M, Muñoz P, Li C, Zhou L, Wu C, Czerwiec E, Sandler L, Seyfang A, Blasco MA, Keefe DL (2007) Telomere lengthening early in development. Nat Cell Biol 9:1436–1441. https://doi.org/10.1038/ncb1664

    Article  CAS  PubMed  Google Scholar 

  7. Thilagavathi J, Venkatesh S, Dada R (2013) Telomere length in reproduction. Androl 45:289–304. https://doi.org/10.1111/and.12008

    Article  CAS  Google Scholar 

  8. Varela E, Muñoz-Lorente MA, Tejera AM, Ortega S, Blasco MA (2016) Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat Commun. https://doi.org/10.1038/ncomms11739

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang S (2017) Telomeres and telomerase. Methods Mol Biol

  10. Liu L, DiGirolamo CM, Navarro PAAS, Blasco MA, Keefe DL (2004) Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294:1–8. https://doi.org/10.1016/j.yexcr.2003.10.031

    Article  CAS  PubMed  Google Scholar 

  11. Huang J, Okuka M, Lu W, Tsibris JCM, McLean MP, Keefe DL, Liu L (2013) Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke. Reprod Toxicol 35:89–95. https://doi.org/10.1016/j.reprotox.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  12. Keefe DL (2020) Telomeres and genomic instability during early development. Eur J Med Genet. https://doi.org/10.1016/j.ejmg.2019.03.002

    Article  PubMed  Google Scholar 

  13. Adjaye J, Daniels R, Bolton V, Monk M (1997) CDNA libraries from single human preimplantation embryos. Genomics 46:337–344. https://doi.org/10.1006/geno.1997.5117

    Article  CAS  PubMed  Google Scholar 

  14. Draskovic I, Vallejo AL (2013) Telomere recombination and alternative telomere lengthening mechanisms. Front Biosc 18:2013. https://doi.org/10.2741/4084

    Article  Google Scholar 

  15. Liu L, Blasco MA, Keefe DL (2002) Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles. Eur Mol Biol Organ 3:230–234. https://doi.org/10.1093/embo-reports/kvf055

    Article  CAS  Google Scholar 

  16. Keefe DL, Franco S, Liu L, Trimarchi J, Cao B, Weitzen S, Agarwal S, Blasco MA (2005) Telomere length predicts embryo fragmentation after in vitro fertilization in Women - Toward a telomere theory of reproductive aging in women. Am J Obstet Gynecol 192:1256–1260. https://doi.org/10.1016/j.ajog.2005.01.036

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL (2004) Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Nat Ac Sc USA 101(17):6496–6501. https://doi.org/10.1073/pnas.0400755101

    Article  CAS  Google Scholar 

  18. Lee H-W, Blasco MA, Gottlieb GJ, Horner JW II, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nat 392(6676):569–574. https://doi.org/10.1038/33345

    Article  CAS  Google Scholar 

  19. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233. https://doi.org/10.1016/j.cell.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  20. Deng Y, Chan SS, Chang S (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8:450–458. https://doi.org/10.1038/nrc2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong CM, Lee XW, Wang X (2013) Telomere shortening in human diseases. FEBS J 280:3180–3193. https://doi.org/10.1111/febs.12326

    Article  CAS  PubMed  Google Scholar 

  22. Blasco MA, Lee H-W (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91(1):25–34. https://doi.org/10.1016/S0092-8674(01)80006-4

    Article  CAS  PubMed  Google Scholar 

  23. Armanios MY, Chen J-L, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I, Phillips JA, Lansdorp PM, Greider CW, Loyd JE (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 356:1317–1326. https://doi.org/10.1056/NEJMoa066157

    Article  CAS  PubMed  Google Scholar 

  24. Hemann MT, Strong MA, Hao L-Y, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107(1):67–77. https://doi.org/10.1016/S0092-8674(01)00504-9

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi H (2007) Mutations of telomerase complex genes linked to bone marrow failures. J Nippon Med Sch 74:202–209. https://doi.org/10.1272/jnms.74.202

    Article  CAS  PubMed  Google Scholar 

  26. Artandi SE, Attardi LD (2005) Pathways connecting telomeres and P53 in senescence, apoptosis, and cancer. Biochem Biophys Res Commun 331:881–890. https://doi.org/10.1016/j.bbrc.2005.03.211

    Article  CAS  PubMed  Google Scholar 

  27. De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, Manivannan J, Peterson AL, Kreiling JA, Neretti N, Sedivy JM (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256. https://doi.org/10.1111/acel.12047

    Article  CAS  PubMed  Google Scholar 

  28. Belan E (2013) LINEs of evidence: noncanonical DNA replication as an epigenetic determinant. Biol Dir 8:22. https://doi.org/10.1186/1745-6150-8-22

    Article  CAS  Google Scholar 

  29. Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi JA, Moran JV (2007) Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nat 446(7132):208–212. https://doi.org/10.1038/nature05560

    Article  CAS  Google Scholar 

  30. Beraldi R, Pittoggi C, Sciamanna I, Mattei E, Spadafora C (2006) Expression of LINE-1 retroposons is essential for murine preimplantation development. Mol Reprod Dev 73:279–287. https://doi.org/10.1002/mrd.20423

    Article  CAS  PubMed  Google Scholar 

  31. Kohlrausch FB, Berteli TS, Wang F, Navarro PA, Keefe DL (2021) Control of LINE-1 expression maintains genome integrity in germline and early embryo development. Reprod Sci. https://doi.org/10.1007/s43032-021-00461-1

    Article  PubMed  Google Scholar 

  32. Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244–248. https://doi.org/10.1016/j.lfs.2015.10.025

    Article  CAS  PubMed  Google Scholar 

  33. Nakagata N, Okamoto M, Ueda O, Suzuki H (1997) Positive effect of partial zona-pellucida dissection on the in vitro fertilizing capacity of cryopreserved C57BL/6J transgenic mouse spermatozoa of low motility. Biol Reprod 57(5):1050–1055. https://doi.org/10.1095/biolreprod57.5.1050

    Article  CAS  PubMed  Google Scholar 

  34. Wang F, Pan X, Kalmbach K, Seth-Smith ML, Ye X, Antumes DMF, Yin Y, Liu L, Keefe DL, Weissman SM (2013) Robust measurement of telomere length in single cells. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1306639110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37(3):1–7. https://doi.org/10.1093/nar/gkn1027

    Article  CAS  Google Scholar 

  36. Kalmbach K, Robinson LG, Wang F, Liu L, Keefe D (2014) Telomere length reprogramming in embryos and stem cells. Biomed Res Int 2014:22–27. https://doi.org/10.1155/2014/925121

    Article  CAS  Google Scholar 

  37. Varela E, Schneider RP, Ortega S, Blasco MA (2011) Dynamics at the inner cell mass versus established embryonic stem (ES) cells. Proc Natl Acad Sci USA 108(37):15207–15212. https://doi.org/10.1073/pnas.1105414108

    Article  PubMed  PubMed Central  Google Scholar 

  38. Keefe DL, Liu L, Marquard K (2007) Telomeres and aging-related meiotic dysfunction in women. Cell Mol Life Sci 64:139–143. https://doi.org/10.1007/s00018-006-6466-z

    Article  CAS  PubMed  Google Scholar 

  39. Treff NR, Su J, Taylor D, Scott RT (2011) Telomere dna deficiency is associated with development of human embryonic aneuploidy. PLoS Genet 7:1–10. https://doi.org/10.1371/journal.pgen.1002161

    Article  CAS  Google Scholar 

  40. Schaetzlein S, Lucas-Hahn A, Lemme E, Kues WA, Dorsch M, Manns MP, Niemann H, Rudolph KL (2004) Telomere length is reset during early mammalian embryogenesis. Proc Natl Acad Sci USA 101(21):8034–8038. https://doi.org/10.1073/pnas.0402400101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anifandis G, Samara M, Simopoulou M, Messini CI, Chatzimeletiou K, Thodou E, Daponte A, Georgiou I (2021) Insights into the role of telomeres in human embryological parameters. Opinions Regarding Ivf J Dev Biol 9:49. https://doi.org/10.3390/jdb9040049

    Article  CAS  PubMed  Google Scholar 

  42. Bo Yu, Smith TH, Battle SL, Ferrell S, Hawkins RD (2019) Superovulation alters global DNA methylation in early mouse embryo development. Epigegenetics 14:780–790. https://doi.org/10.1080/15592294.2019.1615353

    Article  Google Scholar 

  43. Kopca T, Tulay P (2021) Association of assisted reproductive technology treatments with imprinting disorders. Glob Med Genet. https://doi.org/10.1055/s-0041-1723085

    Article  PubMed  PubMed Central  Google Scholar 

  44. Whitelaw N, Bhattacharya S, Hoad G, Horgan GW, Hamilton M, Haggarty P (2014) Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod 29:1452–1458. https://doi.org/10.1093/humrep/deu094

    Article  CAS  PubMed  Google Scholar 

  45. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS (2008) Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 17:1–14. https://doi.org/10.1093/hmg/ddm280

    Article  CAS  PubMed  Google Scholar 

  46. Khosla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64(3):918–926. https://doi.org/10.1095/biolreprod64.3.918

    Article  CAS  PubMed  Google Scholar 

  47. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:334–355

    Article  Google Scholar 

  48. Lin E, Li Z, Huang Y, Ru G, He P (2021) High dosages of equine chorionic gonadotropin exert adverse effects on the developmental competence of IVF-derived mouse embryos and cause oxidative stress-induced aneuploidy. Front Cell Dev Biol 8:1–19. https://doi.org/10.3389/fcell.2020.609290

    Article  Google Scholar 

  49. Chia-Hung Chou C, Chen S-U, Chen C-D, Shun C-T, Wen W-F, Yi-An Tu, Yang J-H (2020) Mitochondrial dysfunction induced by high estradiol concentrations in endometrial epithelial cells. J Clin Endocrinol Metab 105:126–135. https://doi.org/10.1210/clinem/dgz015

    Article  Google Scholar 

  50. De Melo AS, Rodrigues JK, Jordão AA, Ferriani RA, Navarro PA (2017) Oxidative stress and polycystic ovary syndrome: an evaluation during ovarian stimulation for intracytoplasmic sperm injection. Repr 153:97–105. https://doi.org/10.1530/REP-16-0084

    Article  Google Scholar 

  51. Navarro P, Wang FH, Robinson LG, Pimentel R, Radjabi R, Kramer Y, Keefe D (2017) Zidovudine inhibits telomere elongation, increases the transposable element line-1 copy number and compromises mouse embryo development. Fertil Steril 108:e154–e155. https://doi.org/10.1016/j.fertnstert.2017.07.466

    Article  Google Scholar 

  52. Servant G, Deininger PL (2016) Insertion of retrotransposons at chromosome ends: adaptive response to chromosome maintenance. Front Genet 6:1–14. https://doi.org/10.3389/fgene.2015.00358

    Article  CAS  Google Scholar 

  53. Orrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi JA, Moran JV (2007) Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nat 446(7132):208–212. https://doi.org/10.1038/nature05560

    Article  CAS  Google Scholar 

  54. Scholes DT, Kenny AE, Gamache ER, Mou Z, Curcio MJ (2003) Activation of a LTR-retrotransposon by telomere erosion. Proc Natl Acad Sci USA 100:15736–15741. https://doi.org/10.1073/pnas.2136609100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saint-Leandre B, Nguyen SC, Levine MT (2019) Diversification and collapse of a telomere elongation mechanism. Genome Res 29:920–931. https://doi.org/10.1101/gr.245001.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lou PM, DeBaryshe PG (2011) Retrotransposons that maintain chromosome ends. Proc Natl Acad Sci USA 108(51):20317–20324. https://doi.org/10.1073/pnas.1100278108

    Article  Google Scholar 

  57. Von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. https://doi.org/10.1016/S0968-0004(02)02110-2

    Article  Google Scholar 

  58. Von Zglinicki T, Pilger R, Sitte N (2000) Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 28:64–74. https://doi.org/10.1016/s0891-5849(99)00207-5

    Article  Google Scholar 

  59. Richter T, von Zglinicki AT (2007) Continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42(11):1039–1042. https://doi.org/10.1016/j.exger.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  60. Mishra S, Kumar R, Malhotra N, Singh N, Dada R (2016) Mild oxidative stress is beneficial for sperm telomere length maintenance. World J Methodol 6(2):163. https://doi.org/10.5662/wjm.v6.i2.163

    Article  PubMed  PubMed Central  Google Scholar 

  61. Carmignac V, Barberet J, Iranzo J, Quéré R, Guilleman M, Bourc’his D, Fauque P (2019) Effects of assisted reproductive technologies on transposon regulation in the mouse pre-implanted embryo. Hum Reprod 34:612–622. https://doi.org/10.1093/humrep/dez020

    Article  CAS  PubMed  Google Scholar 

  62. Liang X, Cui X, Sun S, Jin Y, Heo YT, Namgoong S, Kim N (2013) Superovulation induces defective methylation in line-1 retrotransposon elements in blastocyst. 11:69. https://doi.org/10.1186/1477-7827-11-69.

Download references

Funding

Coordination for the Improvement of Higher Education Personnel (CAPES, Finance Code: 001, Brazil; Grant number 88887.371487/2019-00 to TSB), Brazilian National Council for Scientific and Technological Development (CNPq, Brazil; Grant number 204747/2018-0 to FBK) and the Stanley H. Kaplan Fund of the NYU Grossman School of Medicine (to DLK). These data has been presented previously at 77th ASRM Scientific Congress & Expo: vol. 116, issue 3, Suppl: E168-E169, September 01. 2021, https://doi.org/10.1016/j.fertnstert.2021.07.465.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thalita S. Berteli.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Ethical approval

This study was approved by the Faculty of Medicine of Ribeirão Preto Ethics Committee on the Use of Animals, under the number CEUA-FMRP/USP-107/2017.

Consent to participate

Not applicable.

Consent for publication

The author agree to its submission to the Molecular Biology Reports Journal and, if accepted, to its publication in this journal. We warrant that this article is original, does not infringe on any copyright or other proprietary right of any third party, is not under consideration by another journal and has not been previously published. Ethical approval has been sought and obtained as necessary and any conflicts of interest stated.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berteli, T.S., Wang, F., Kohlrausch, F.B. et al. Impact of superovulation and in vitro fertilization on LINE-1 copy number and telomere length in C57BL/6 J mice blastocysts. Mol Biol Rep 49, 4909–4917 (2022). https://doi.org/10.1007/s11033-022-07351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07351-y

Keywords