Abstract
Cancer stem cells (CSCs) are a small subpopulation of immature cells located in the tumor mass. These cells are responsible for tumor development, proliferation, resistance and spreading. CSCs are characterized by three unique features: the ability to self-renew, differentiation and tumor formation. CSCs are similar to stem cells, but they differ in the malignant phenotype. CSCs become immortal and survive harsh environmental conditions such as hypoxia, starvation and oxidative stress. However, this harsh tumor microenvironment induces the activation of autophagy, which further increases the CSCs stemness profile, and all these features further increase tumorigenicity and metastasis capacity. Autophagy is induced by the extracellular and cellular microenvironment. Hypoxia is one of the most common factors that highly increases the activity of autophagy in CSCs. Therefore, hypoxia-induced autophagy and CSCs proliferation should be elucidated in order to find a novel cure to defeat cancer cells (CSCs and non-CSCs). The remaining challenges to close the gap between the laboratory bench and the development of therapies, to use autophagy against CSCs in patients, could be addressed by adopting a 3D platform to better-mimic the natural environment in which these cells reside. Ultimately allowing to obtain the blueprints for bioprocess scaling up and to develop the production pipeline for safe and cost-effective autophagy-based novel biologics.
This is a preview of subscription content, access via your institution.



References
Jamieson CHM, Ailles LE, Dylla SJ et al (2004) Granulocyte–Macrophage Progenitors as Candidate Leukemic Stem Cells in Blast-Crisis CML. N Engl J Med 351(7):657–667. doi:https://doi.org/10.1056/nejmoa040258
Aguilar-Gallardo C, Rutledge EC, Martínez-Arroyo AM, Hidalgo JJ, Domingo S, Simón C (2012) Overcoming Challenges of Ovarian Cancer Stem Cells: Novel Therapeutic Approaches. Stem Cell Rev Reports 8(3):994–1010. doi:https://doi.org/10.1007/s12015-011-9344-5
Huntly BJP, Shigematsu H, Deguchi K et al (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6(6):587–596. doi:https://doi.org/10.1016/j.ccr.2004.10.015
Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–822. doi:https://doi.org/10.1038/nature04980
Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902. doi:https://doi.org/10.1038/nrc1232
Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene. ;23(43 REV. ISS. 6):7274–7282. doi:https://doi.org/10.1038/sj.onc.1207947
Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5(11):886–897. doi:https://doi.org/10.1038/nrc1738
Klionsky DJ, Autophagy (2007) From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937. doi:https://doi.org/10.1038/nrm2245
Yorimitsu T, Klionsky DJ, Autophagy (2005) Molecular machinery for self-eating. Cell Death Differ 12:1542–1552. doi:https://doi.org/10.1038/sj.cdd.4401765
Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Sci (80-) 290(5497):1717–1721. doi:https://doi.org/10.1126/science.290.5497.1717
Mizushima N, Autophagy (2007) Process and function. Genes Dev 21(22):2861–2873. doi:https://doi.org/10.1101/gad.1599207
Cao B, Camden AJ, Parnell LA, Mysorekar IU (2017) Autophagy regulation of physiological and pathological processes in the female reproductive tract. Am J Reprod Immunol 77(5). doi:https://doi.org/10.1111/aji.12650
Ojha R, Bhattacharyya S, Singh SK (2015) Autophagy in Cancer Stem Cells: A Potential Link Between Chemoresistance, Recurrence, and Metastasis. Biores Open Access 4(1):97–108. doi:https://doi.org/10.1089/biores.2014.0035
Swartz MA, Iida N, Roberts EW et al (2012) Tumor microenvironment complexity: Emerging roles in cancer therapy. Cancer Res 72(10):2473–2480. doi:https://doi.org/10.1158/0008-5472.CAN-12-0122
Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8(1):56–61. doi:https://doi.org/10.1038/nrc2255
Clarke L, Van Der Kooy D (2009) Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 27(8):1879–1886. doi:https://doi.org/10.1002/stem.96
Li Z, Bao S, Wu Q et al (2009) Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell 15(6):501–513. doi:https://doi.org/10.1016/j.ccr.2009.03.018
Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238. doi:https://doi.org/10.1016/j.stem.2015.02.015
Conley SJ, Gheordunescu E, Kakarala P et al (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109(8):2784–2789. doi:https://doi.org/10.1073/pnas.1018866109
Piao Y, Liang J, Holmes L et al (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14(11):1379–1392. doi:https://doi.org/10.1093/neuonc/nos158
Espina V, Liotta LA (2011) What is the malignant nature of human ductal carcinoma in situ? Nat Rev Cancer 11(1):68–75. doi:https://doi.org/10.1038/nrc2950
Espina V, Mariani BD, Gallagher RI et al (2010) Malignant Precursor Cells Pre-Exist in Human Breast DCIS and Require Autophagy for Survival. PLoS ONE 5(4). doi:https://doi.org/10.1371/journal.pone.0010240
Ratcliffe PJ (2007) HIF-1 and HIF-2: Working alone or together in hypoxia? J Clin Invest 117(4):862–865. doi:https://doi.org/10.1172/JCI31750
McDonald PC, Chafe SC, Dedhar S (2016) Overcoming hypoxia-mediated tumor progression: Combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol 4(MAR). doi:https://doi.org/10.3389/fcell.2016.00027
Gao T, Li J, Lu Y et al (2016) The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed Pharmacother 80:393–405. doi:https://doi.org/10.1016/j.biopha.2016.02.044
Babaei G, Aziz SG-G, Jaghi NZZ (2021) EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 133:110909. doi:https://doi.org/10.1016/j.biopha.2020.110909
Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629. doi:https://doi.org/10.1038/nrclinonc.2017.44
Marcucci F, Ghezzi P, Rumio C (2017) The role of autophagy in the cross-talk between epithelial-mesenchymal transitioned tumor cells and cancer stem-like cells. Mol Cancer 16(1):3. doi:https://doi.org/10.1186/s12943-016-0573-8
Liu XW, Su Y, Zhu H et al (2010) HIF-1α-dependent autophagy protects HeLa cells from fenretinide (4-HPR)-induced apoptosis in hypoxia. Pharmacol Res 62(5):416–425. doi:https://doi.org/10.1016/j.phrs.2010.07.002
Zhang H, Bosch-Marce M, Shimoda LA et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903. doi:https://doi.org/10.1074/jbc.M800102200
Sato A, Okada M, Shibuya K et al (2014) Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res 12(1):119–131. doi:https://doi.org/10.1016/j.scr.2013.09.012
Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783. doi:https://doi.org/10.1038/nature07733
Kim YS, Kang MJ, Cho YM (2013) Low production of reactive oxygen species and high DNA repair: Mechanism of radioresistance of prostate cancer stem cells. Anticancer Res 33(10):4469–4474. https://www.ncbi.nlm.nih.gov/pubmed/24123017
Menendez JA, Joven J, Cufí S et al (2013) The warburg effect version 2.0 : Metabolic reprogramming of cancer stem cells. Cell Cycle 12(8):1166–1179. doi:https://doi.org/10.4161/cc.24479
Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25(14):1510–1527. doi:https://doi.org/10.1101/gad.2051011
Wei H, Guan JL (2012) Pro-tumorigenic function of autophagy in mammary oncogenesis. Autophagy 8(1):129–131. doi:https://doi.org/10.4161/auto.8.1.18171
Jiang S, Dupont N, Castillo EF, Deretic V (2013) Secretory versus degradative autophagy: Unconventional secretion of inflammatory mediators. J Innate Immun 5(5):471–479. doi:https://doi.org/10.1159/000346707
Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z et al (2011) Cytokine production and inflammation drive autophagy in the tumor microenvironment. Cell Cycle 10(11):1784–1793. doi:https://doi.org/10.4161/cc.10.11.15674
Jonchère B, Bélanger A, Guette C, Barré B, Coqueret O (2013) STAT3 as a new autophagy regulator. Jak-Stat 2(3):e24353. doi:https://doi.org/10.4161/jkst.24353
Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 1(5):629–649. http://www.ncbi.nlm.nih.gov/pubmed/21994903%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3189824
Bánréti Á, Sass M, Graba Y (2013) The emerging role of acetylation in the regulation of autophagy. Autophagy 9(6):819–829. doi:https://doi.org/10.4161/auto.23908
Corominas-Faja B, Cuyàs E, Gumuzio J et al (2014) Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 5(18):8306–8316. doi:https://doi.org/10.18632/oncotarget.2059
Ma I, Allan AL (2011) The Role of Human Aldehyde Dehydrogenase in Normal and Cancer Stem Cells. Stem Cell Rev Reports 7(2):292–306. doi:https://doi.org/10.1007/s12015-010-9208-4
Gong C, Bauvy C, Tonelli G et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32(18):2261–2272. doi:https://doi.org/10.1038/onc.2012.252
Gong C, Song E, Codogno P, Mehrpour M (2012) The roles of BECN1 and autophagy in cancer are context dependent. Autophagy 8(12):1853–1855. doi:https://doi.org/10.4161/auto.21996
Milla LA, González-Ramírez CN, Palma V (2012) Sonic hedgehog in cancer stem cells: A novel link with autophagy. Biol Res 45(3):223–230. doi:https://doi.org/10.4067/S0716-97602012000300004
Jimenez-Sanchez M, Menzies FM, Chang YY, Simecek N, Neufeld TP, Rubinsztein DC (2012) The Hedgehog signalling pathway regulates autophagy. Nat Commun 3(1200). doi:https://doi.org/10.1038/ncomms2212
Xu Y, An Y, Wang X, Zha W, Li X (2014) Inhibition of the Hedgehog pathway induces autophagy in pancreatic ductal adenocarcinoma cells. Oncol Rep 31(2):707–712. doi:https://doi.org/10.3892/or.2013.2881
Wang Y, Han C, Lu L, Magliato S, Wu T (2013) Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology 58(3):995–1010. doi:https://doi.org/10.1002/hep.26394
Holland JD, Klaus A, Garratt AN, Birchmeier W (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25(2):254–264. doi:https://doi.org/10.1016/j.ceb.2013.01.004
Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: Can we safely eradicate cancer stem cells? Clin Cancer Res 16(12):3153–3162. doi:https://doi.org/10.1158/1078-0432.CCR-09-2943
Teng Y, Wang X, Wang Y, Ma D (2010) Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun 392(3):373–379. doi:https://doi.org/10.1016/j.bbrc.2010.01.028
Hallett RM, Kondratyev MK, Giacomelli AO et al (2012) Small molecule antagonists of the Wnt/Beta-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS ONE 7(3). doi:https://doi.org/10.1371/journal.pone.0033976
Hsieh CH, Cheng LH, Hsu HH et al (2013) Apicidin-resistant HA22T hepatocellular carcinoma cells strongly activated the wnt/β-catenin signaling pathway and MMP-2 Expression via the IGF-IR/PI3K/Akt signaling pathway enhancing cell metastatic Effect. Biosci Biotechnol Biochem 77(12):2397–2404. doi:https://doi.org/10.1271/bbb.130503
Jing Y, Han Z, Zhang S, Liu Y, Wei L (2011) Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 1(1). doi:https://doi.org/10.1186/2045-3701-1-29
Jiang YG, Luo Y, He DL et al (2007) Role of Wnt/β-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1α. Int J Urol 14(11):1034–1039. doi:https://doi.org/10.1111/j.1442-2042.2007.01866.x
Li X, Xu Y, Chen Y et al (2013) SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/β-catenin signal network. Cancer Lett 336(2):379–389. doi:https://doi.org/10.1016/j.canlet.2013.03.027
Kaidi A, Williams AC, Paraskeva C (2007) Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9(2):210–217. doi:https://doi.org/10.1038/ncb1534
Essers MAG, De Vries-Smits LMM, Barker N, Polderman PE, Burgering BMT, Korswagen HC (2005) Functional interaction between β-catenin and FOXO in oxidative stress signaling. Sci (80-) 308(5725):1181–1184. doi:https://doi.org/10.1126/science.1109083
Petherick KJ, Williams AC, Lane JD et al (2013) Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J 32(13):1903–1916. doi:https://doi.org/10.1038/emboj.2013.123
Gao C, Cao W, Bao L et al (2010) Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 12(8):781–790. doi:https://doi.org/10.1038/ncb2082
Ji Q, Hao X, Zhang M et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4(8). doi:https://doi.org/10.1371/journal.pone.0006816
Farnie G, Clarke RB, Spence K et al (2007) Novel cell culture technique for primary ductal carcinoma in situ: Role of notch and epidermal growth Factor Receptor Signaling Pathways. J Natl Cancer Inst 99(8):616–627. doi:https://doi.org/10.1093/jnci/djk133
Fan X, Khaki L, Zhu TS et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1):5–16. doi:https://doi.org/10.1002/stem.254
Miele L (2006) Notch signaling. Clin Cancer Res 12(4):1074–1079. doi:https://doi.org/10.1158/1078-0432.CCR-05-2570
Wang Z, Li Y, Banerjee S, Sarkar FH (2008) Exploitation of the notch signaling pathway as a novel target for cancer therapy. Anticancer Res 28(6 A):3621–3630. https://www.ncbi.nlm.nih.gov/pubmed/19189643
Shi J, Feng J, Xie J et al (2017) Targeted blockade of TGF-β and IL-6/JAK2/STAT3 pathways inhibits lung cancer growth promoted by bone marrow-derived myofibroblasts. Sci Rep 7(1). doi:https://doi.org/10.1038/s41598-017-09020-8
Matsui WH (2016) Cancer stem cell signaling pathways. Med (Baltim) 95(1 Suppl 1):S8–S19. doi:https://doi.org/10.1097/MD.0000000000004765
Zhou H, Yuan M, Yu Q, Zhou X, Min W, Gao D (2016) Autophagy regulation and its role in gastric cancer and colorectal cancer. Cancer Biomarkers 17(1):1–10. doi:https://doi.org/10.3233/CBM-160613
Zhou J, Wulfkuhle J, Zhang H et al (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A 104(41):16158–16163. doi:https://doi.org/10.1073/pnas.0702596104
Ribatti D (2017) The concept of immune surveillance against tumors. The first theories. Oncotarget 8(4):7175–7180. doi:https://doi.org/10.18632/oncotarget.12739
Janji B, Viry E, Moussay E et al (2016) The multifaceted role of autophagy in tumor evasion from immune surveillance. Oncotarget 7(14):17591–17607. doi:https://doi.org/10.18632/oncotarget.7540
Jiang G-M, Tan Y, Wang H et al (2019) The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer 18(1):17. doi:https://doi.org/10.1186/s12943-019-0944-z
Cadwell K (2016) Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol 16(11):661–675. doi:https://doi.org/10.1038/nri.2016.100
Schöning JP, Monteiro M, Gu W (2017) Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α. Clin Exp Pharmacol Physiol 44(2):153–161. doi:https://doi.org/10.1111/1440-1681.12693
Seo EJ, Kim DK, Jang IH et al (2016) Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget 7(34):55624–55638. doi:https://doi.org/10.18632/oncotarget.10954
Sosa MS, Parikh F, Maia AG et al (2015) NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Commun 6(1). doi:https://doi.org/10.1038/ncomms7170
Taylor CT, Colgan SP (2017) Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 17(12):774–785. doi:https://doi.org/10.1038/nri.2017.103
Salem A, Asselin MC, Reymen B et al (2018) Targeting hypoxia to improve non–small cell lung cancer outcome. J Natl Cancer Inst 110(1). doi:https://doi.org/10.1093/jnci/djx160
Goulielmaki M, Assimomytis N, Rozanc J et al (2019) DPS-2: A Novel Dual MEK/ERK and PI3K/AKT Pathway Inhibitor with Powerful Ex Vivo and In Vivo Anticancer Properties. Transl Oncol 12(7):932–950. doi:https://doi.org/10.1016/j.tranon.2019.04.005
Vera-Ramirez L, Vodnala SK, Nini R, Hunter KW, Green JE (2018) Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun 9(1):1944. doi:https://doi.org/10.1038/s41467-018-04070-6
Imamura Y, Mukohara T, Shimono Y et al (2015) Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 33(4):1837–1843. doi:https://doi.org/10.3892/or.2015.3767
Riedl A, Schlederer M, Pudelko K et al (2017) Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J Cell Sci 130(1):203–218. doi:https://doi.org/10.1242/jcs.188102
Emami A, Shojaei S, da Silva Rosa SC et al (2019) Mechanisms of simvastatin myotoxicity: The role of autophagy flux inhibition. Eur J Pharmacol 862:172616. doi:https://doi.org/10.1016/j.ejphar.2019.172616
Acknowledgements
“Not applicable”.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
Authorship Conception and design: CAG, MZ. Analysis and interpretation of data: JF, KDAQ. Drafting the article: CAG, KDAQ, MZ. Final approval of the version to be published: MZ, JF.
Corresponding author
Ethics declarations
Ethical approval and consent to participate
Not applicable.
Consent for publication
All authors consent to the publication of the manuscript in Cellular Oncology.
Availability of supporting data
“Not applicable”.
Conflict of interest
The Authors declare that there is no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Cristóbal Aguilar-Gallardo and Mauricio Zamorano contributed equally to this work.
Rights and permissions
About this article
Cite this article
Aguilar-Gallardo, C., Zamorano, M., Farias, J.G. et al. Understanding autophagy role in cancer stem cell development. Mol Biol Rep 49, 6741–6751 (2022). https://doi.org/10.1007/s11033-022-07299-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-022-07299-z
Keywords
- CSCs, Cancer Stem cells
- Autophagy
- Hypoxia
- Signaling pathway
- Hypoxia-targeted therapies